File: test_solving.py

package info (click to toggle)
dolfin 2018.1.0.post1-16
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 28,764 kB
  • sloc: xml: 104,040; cpp: 98,856; python: 22,511; makefile: 204; sh: 182
file content (125 lines) | stat: -rw-r--r-- 3,579 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""Unit tests for the solve function"""

# Copyright (C) 2011 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.

import pytest
from dolfin import *
from dolfin_utils.test import *


def test_bcs():
    "Check that the bcs argument is picked up"

    mesh = UnitSquareMesh(4, 4)
    V = FunctionSpace(mesh, "Lagrange", 1)
    u = TrialFunction(V)
    v = TestFunction(V)
    f = Constant(100.0)

    a = dot(grad(u), grad(v))*dx + u*v*dx
    L = f*v*dx

    bc = DirichletBC(V, 0.0, DomainBoundary())

    # Single bc argument
    u1 = Function(V)
    solve(a == L, u1, bc)

    # List of bcs
    u2 = Function(V)
    solve(a == L, u2, [bc])

    # Single bc keyword argument
    u3 = Function(V)
    solve(a == L, u3, bcs=bc)

    # List of bcs keyword argument
    u4 = Function(V)
    solve(a == L, u4, bcs=[bc])

    # Check all solutions
    assert round(u1.vector().norm("l2") - 14.9362601686, 10) == 0
    assert round(u2.vector().norm("l2") - 14.9362601686, 10) == 0
    assert round(u3.vector().norm("l2") - 14.9362601686, 10) == 0
    assert round(u4.vector().norm("l2") - 14.9362601686, 10) == 0


def test_bcs_space():
    "Check that the bc space is checked to be a subspace of trial space"
    mesh = UnitSquareMesh(4, 4)
    V = FunctionSpace(mesh, "Lagrange", 1)
    u = TrialFunction(V)
    v = TestFunction(V)
    f = Constant(100.0)

    a = dot(grad(u), grad(v))*dx + u*v*dx
    L = f*v*dx

    Q = FunctionSpace(mesh, "Lagrange", 2)
    bc = DirichletBC(Q, 0.0, DomainBoundary())

    u = Function(V)

    with pytest.raises(RuntimeError):
        solve(a == L, u, bc)

    with pytest.raises(RuntimeError):
        solve(action(a, u) - L == 0, u, bc)


def test_calling():
    "Test that unappropriate arguments are not allowed"
    mesh = UnitSquareMesh(4, 4)
    V = FunctionSpace(mesh, "Lagrange", 1)
    u = TrialFunction(V)
    v = TestFunction(V)
    f = Constant(100.0)

    a = dot(grad(u), grad(v))*dx + u*v*dx
    L = f*v*dx

    bc = DirichletBC(V, 0.0, DomainBoundary())

    kwargs = {"solver_parameters":{"linear_solver": "lu"},
              "form_compiler_parameters":{"optimize": True}}

    A = assemble(a)
    b = assemble(L)
    x = Vector()

    with pytest.raises(RuntimeError):
        solve(A, x, b, **kwargs)

    # FIXME: Include more tests for this versatile function


def test_nonlinear_variational_solver_custom_comm():
    "Check that nonlinear variational solver works on subset of comm_world"
    if MPI.rank(MPI.comm_world) == 0:
        mesh = UnitIntervalMesh(MPI.comm_self, 2)
        V = FunctionSpace(mesh, "CG", 1)
        f = Constant(1)
        u = Function(V)
        v = TestFunction(V)
        F = inner(u, v)*dx - inner(f, v)*dx

        # Check that following does not deadlock
        solve(F == 0, u)
        solve(F == 0, u, solver_parameters={"nonlinear_solver": "newton"})
        if has_petsc():
            solve(F == 0, u, solver_parameters={"nonlinear_solver": "snes"})