1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
"""Unit tests for the solve function"""
# Copyright (C) 2011 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
import pytest
from dolfin import *
from dolfin_utils.test import *
def test_bcs():
"Check that the bcs argument is picked up"
mesh = UnitSquareMesh(4, 4)
V = FunctionSpace(mesh, "Lagrange", 1)
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(100.0)
a = dot(grad(u), grad(v))*dx + u*v*dx
L = f*v*dx
bc = DirichletBC(V, 0.0, DomainBoundary())
# Single bc argument
u1 = Function(V)
solve(a == L, u1, bc)
# List of bcs
u2 = Function(V)
solve(a == L, u2, [bc])
# Single bc keyword argument
u3 = Function(V)
solve(a == L, u3, bcs=bc)
# List of bcs keyword argument
u4 = Function(V)
solve(a == L, u4, bcs=[bc])
# Check all solutions
assert round(u1.vector().norm("l2") - 14.9362601686, 10) == 0
assert round(u2.vector().norm("l2") - 14.9362601686, 10) == 0
assert round(u3.vector().norm("l2") - 14.9362601686, 10) == 0
assert round(u4.vector().norm("l2") - 14.9362601686, 10) == 0
def test_bcs_space():
"Check that the bc space is checked to be a subspace of trial space"
mesh = UnitSquareMesh(4, 4)
V = FunctionSpace(mesh, "Lagrange", 1)
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(100.0)
a = dot(grad(u), grad(v))*dx + u*v*dx
L = f*v*dx
Q = FunctionSpace(mesh, "Lagrange", 2)
bc = DirichletBC(Q, 0.0, DomainBoundary())
u = Function(V)
with pytest.raises(RuntimeError):
solve(a == L, u, bc)
with pytest.raises(RuntimeError):
solve(action(a, u) - L == 0, u, bc)
def test_calling():
"Test that unappropriate arguments are not allowed"
mesh = UnitSquareMesh(4, 4)
V = FunctionSpace(mesh, "Lagrange", 1)
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(100.0)
a = dot(grad(u), grad(v))*dx + u*v*dx
L = f*v*dx
bc = DirichletBC(V, 0.0, DomainBoundary())
kwargs = {"solver_parameters":{"linear_solver": "lu"},
"form_compiler_parameters":{"optimize": True}}
A = assemble(a)
b = assemble(L)
x = Vector()
with pytest.raises(RuntimeError):
solve(A, x, b, **kwargs)
# FIXME: Include more tests for this versatile function
def test_nonlinear_variational_solver_custom_comm():
"Check that nonlinear variational solver works on subset of comm_world"
if MPI.rank(MPI.comm_world) == 0:
mesh = UnitIntervalMesh(MPI.comm_self, 2)
V = FunctionSpace(mesh, "CG", 1)
f = Constant(1)
u = Function(V)
v = TestFunction(V)
F = inner(u, v)*dx - inner(f, v)*dx
# Check that following does not deadlock
solve(F == 0, u)
solve(F == 0, u, solver_parameters={"nonlinear_solver": "newton"})
if has_petsc():
solve(F == 0, u, solver_parameters={"nonlinear_solver": "snes"})
|