File: test_constrained_function_space.py

package info (click to toggle)
dolfin 2018.1.0.post1-16
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 28,764 kB
  • sloc: xml: 104,040; cpp: 98,856; python: 22,511; makefile: 204; sh: 182
file content (172 lines) | stat: -rwxr-xr-x 5,386 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""Unit tests for FunctionSpace with constrained domain"""

# Copyright (C) 2012-2014 Garth N. Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Mikael Mortensen 2013

import pytest
import numpy
from dolfin import *


class PeriodicBoundary2(SubDomain):
    def __init__(self, tolerance=DOLFIN_EPS):
        SubDomain.__init__(self, tolerance)
        self.tol = tolerance

    def inside(self, x, on_boundary):
        return bool(x[0] < self.tol and x[0] > -self.tol and on_boundary)

    def map(self, x, y):
        y[0] = x[0] - 1.0
        y[1] = x[1]


class PeriodicBoundary3(SubDomain):
    def inside(self, x, on_boundary):
        return bool(x[0] < DOLFIN_EPS and x[0] > -DOLFIN_EPS and on_boundary)

    def map(self, x, y):
        y[0] = x[0] - 1.0
        y[1] = x[1]
        y[2] = x[2]


def test_instantiation():
    """ A rudimentary test for instantiation"""

    sub_domain = PeriodicBoundary3()
    mesh = UnitCubeMesh(8, 8, 8)
    V = FunctionSpace(mesh, "CG", 1, constrained_domain=sub_domain)


def test_instantiation_mixed_element():
    """A rudimentary test for instantiation with mixed elements"""

    pbc = PeriodicBoundary2()
    mesh = UnitSquareMesh(8, 8)
    P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    VV = FunctionSpace(mesh, P1*P1, constrained_domain=pbc)


def test_instantiation_mixed_element_real():
    """A rudimentary test for instantiation with mixed elements that
    include a real space
    """

    pbc = PeriodicBoundary2()
    mesh = UnitSquareMesh(8, 8)
    P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    R = FiniteElement("Real", mesh.ufl_cell(), 0)
    VV = FunctionSpace(mesh, P1*R, constrained_domain=pbc)
    VV = FunctionSpace(mesh, R*P1, constrained_domain=pbc)


def test_instantiation_no_vertex_element_2D():
    """ A rudimentary test for instantiation for element that does
    not require number of vertices (2D)"""

    pbc = PeriodicBoundary2()
    mesh = UnitSquareMesh(8, 8)
    V = FunctionSpace(mesh, "BDM", 1, constrained_domain=pbc)


def test_instantiation_no_vertex_element_3D():
    """ A rudimentary test for instantiation for element that does
    not require number of vertices (3D)"""

    pbc = PeriodicBoundary3()
    mesh = UnitCubeMesh(8, 8, 9)
    V = FunctionSpace(mesh, "BDM", 1, constrained_domain=pbc)


def test_director_lifetime():
    """Test for problems with objects with directors going out
    of scope"""

    mesh = UnitSquareMesh(8, 8)
    V = FunctionSpace(mesh, "Lagrange", 1,
                      constrained_domain=PeriodicBoundary2())


def test_tolerance():
    """Test tolerance for matching periodic mesh entities"""
    shift = 0.0001
    mesh = UnitSquareMesh(8, 8)

    # Randomly perturb mesh vertex coordinates
    mesh_perturb = Mesh(mesh)
    import random
    for x in mesh_perturb.coordinates():
        x[0] += random.uniform(-shift, shift)
        x[1] += random.uniform(-shift, shift)

    pbc = PeriodicBoundary2()
    pbc_tol = PeriodicBoundary2(2*shift)

    for dim in range(mesh.geometry().dim()):
        periodic_pairs = PeriodicBoundaryComputation.compute_periodic_pairs(mesh, pbc, dim)
        num_periodic_pairs0 = len(periodic_pairs)

        periodic_pairs = PeriodicBoundaryComputation.compute_periodic_pairs(mesh_perturb,
                                                                            pbc_tol, dim)
        num_periodic_pairs1 = len(periodic_pairs)
        assert num_periodic_pairs0 == num_periodic_pairs1


def test_solution():
    """Test periodic constrained domain by checking solution to a PDE."""

    # Create mesh and constrained FunctionSpace
    mesh = UnitSquareMesh(8, 8)
    pbc = PeriodicBoundary2()
    V = FunctionSpace(mesh, "Lagrange", 1, constrained_domain=pbc)

    class DirichletBoundary(SubDomain):
        def inside(self, x, on_boundary):
            return bool((x[1] < DOLFIN_EPS or x[1] > (1.0 - DOLFIN_EPS)) and
                        on_boundary)

    # Dirichlet boundary condition
    dirichlet_boundary = DirichletBoundary()
    bc0 = DirichletBC(V, 0.0, dirichlet_boundary)
    bcs = [bc0]

    # Define variational problem, linear formulation
    u, v = TrialFunction(V), TestFunction(V)
    f = Expression("sin(x[0])", degree=2)
    a = dot(grad(u), grad(v))*dx
    L = f*v*dx

    # Compute solution
    u = Function(V)
    solve(a == L, u, bcs)

    assert round(u.vector().norm("l2") - 0.3368694028630991, 10) == 0

    # Define variational problem, nonlinear formulation
    u, v = Function(V), TestFunction(V)
    f = Expression("sin(x[0])", degree=2)
    a = dot(grad(u), grad(v))*dx
    L = f*v*dx
    F = a - L

    # Compute solution
    solve(F == 0, u, bcs)

    assert round(u.vector().norm("l2") - 0.3368694028630991, 10) == 0