1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
"""Unit tests for the IntersectionConstruction class"""
# Copyright (C) 2014 Anders Logg and August Johansson
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
import pytest
import numpy as np
from dolfin import *
from dolfin_utils.test import skip_in_parallel
def triangulation_to_mesh_2d(triangulation):
editor = MeshEditor()
mesh = Mesh()
editor.open(mesh, 2, 2)
num_cells = len(triangulation) // 6
num_vertices = len(triangulation) // 2
editor.init_cells(num_cells)
editor.init_vertices(num_vertices)
for i in range(num_cells):
editor.add_cell(i, np.array( (3*i, 3*i + 1, 3*i + 2), dtype='uint') )
for i in range(num_vertices):
editor.add_vertex(i, np.array( (triangulation[2*i], triangulation[2*i + 1]), dtype='float'))
editor.close()
return mesh
def triangulation_to_mesh_2d_3d(triangulation):
editor = MeshEditor()
mesh = Mesh()
editor.open(mesh,2,3)
num_cells = len(triangulation) // 9
num_vertices = len(triangulation) // 3
editor.init_cells(num_cells)
editor.init_vertices(num_vertices)
for i in range(num_cells):
editor.add_cell(i, np.array( (3*i, 3*i+1, 3*i+2), dtype='uint'))
for i in range(num_vertices):
editor.add_vertex(i, np.array( (triangulation[3*i], triangulation[3*i+1], triangulation[3*i+2]), dtype='float') )
editor.close()
return mesh
def triangulation_to_mesh_3d(triangulation):
editor = MeshEditor()
mesh = Mesh()
editor.open(mesh,3,3)
num_cells = len(triangulation) // 12
num_vertices = len(triangulation) // 3
editor.init_cells(num_cells)
editor.init_vertices(num_vertices)
for i in range(num_cells):
editor.add_cell(i, np.array( (4*i, 4*i+1, 4*i+2, 4*i+3), dtype='uint'))
for i in range(num_vertices):
editor.add_vertex(i, np.array( (triangulation[3*i], triangulation[3*i+1], triangulation[3*i+2]), dtype='float'))
editor.close()
return mesh
@skip_in_parallel
@pytest.mark.skipif(True, reason="Missing swig typemap")
def test_triangulate_intersection_2d():
# Create two meshes of the unit square
mesh_0 = UnitSquareMesh(1, 1)
mesh_1 = UnitSquareMesh(1, 1)
# Translate second mesh randomly
#dx = Point(np.random.rand(),np.random.rand())
dx = Point(0.278498, 0.546881)
mesh_1.translate(dx)
# Exact volume of intersection
exactvolume = (1 - abs(dx[0]))*(1 - abs(dx[1]))
# Compute triangulation volume
volume = 0
for c0 in cells(mesh_0):
for c1 in cells(mesh_1):
intersection = c0.intersection(c1)
if len(intersection) >= 3 :
triangulation = cpp.geometry.ConvexTriangulation.triangulate(intersection, 2, 2)
tmesh = triangulation_to_mesh_2d(triangulation)
for t in cells(tmesh):
volume += t.volume()
errorstring = "translation=" + str(dx[0]) + str(" ") + str(dx[1])
assert round(volume - exactvolume, 7) == 0, errorstring
@skip_in_parallel
@pytest.mark.skipif(True, reason="Not implemented in 3D")
def test_triangulate_intersection_2d_3d():
# Note: this test will fail if the triangle mesh is aligned
# with the tetrahedron mesh
# Create a unit cube
mesh_0 = UnitCubeMesh(1,1,1)
# Create a 3D surface mesh
editor = MeshEditor()
mesh_1 = Mesh()
editor.open(mesh_1,2,3)
editor.init_cells(2)
editor.init_vertices(4)
# Add cells
editor.add_cell(0, np.array( (0,1,2), dtype='uint'))
editor.add_cell(1, np.array( (1,2,3), dtype='uint'))
# Add vertices
editor.add_vertex(0, np.array( (0, 0, 0.5), dtype='float'))
editor.add_vertex(1, np.array( (1, 0, 0.5), dtype='float'))
editor.add_vertex(2, np.array( (0, 1, 0.5), dtype='float'))
editor.add_vertex(3, np.array( (1, 1, 0.5), dtype='float'))
editor.close()
# Rotate the triangle mesh around y axis
angle = 23.46354
mesh_1.rotate(angle,1)
# Exact area
exact_volume = 1
# Compute triangulation
volume = 0
for c0 in cells(mesh_0):
for c1 in cells(mesh_1):
intersection = c0.intersection(c1)
triangulation = cpp.geometry.ConvexTriangulation.triangulate(intersection, 3, 2)
if (triangulation.size>0):
tmesh = triangulation_to_mesh_2d_3d(triangulation)
for t in cells(tmesh):
volume += t.volume()
errorstring = "rotation angle = " + str(angle)
assert round(volume - exact_volume, 7) == 0, errorstring
@skip_in_parallel
@pytest.mark.skipif(True, reason="Missing swig typemap for call to ConvexTriangulation")
def test_triangulate_intersection_3d():
# Create two meshes of the unit cube
mesh_0 = UnitCubeMesh(1, 1, 1)
mesh_1 = UnitCubeMesh(1, 1, 1)
# Translate second mesh
# dx = Point(np.random.rand(),np.random.rand(),np.random.rand())
dx = Point(0.913375, 0.632359, 0.097540)
mesh_1.translate(dx)
exactvolume = (1 - abs(dx[0]))*(1 - abs(dx[1]))*(1 - abs(dx[2]))
# Compute triangulation
volume = 0
for c0 in cells(mesh_0):
for c1 in cells(mesh_1):
intersection = c0.intersection(c1)
triangulation = cpp.geometry.ConvexTriangulation.triangulate(intersection, 3, 3)
if (triangulation.size>0):
tmesh = triangulation_to_mesh_3d(triangulation)
for t in cells(tmesh):
volume += t.volume()
errorstring = "translation="
errorstring += str(dx[0])+" "+str(dx[1])+" "+str(dx[2])
assert round(volume - exactvolume, 7) == 0, errorstring
def test_triangle_triangle_2d_trivial() :
" These two triangles intersect in a common edge"
res = cpp.geometry.IntersectionConstruction.intersection_triangle_triangle_2d(Point(0.0, 0.0),
Point(1.0, 0.0),
Point(0.5, 1.0),
Point(0.5, 0.5),
Point(1.0, 1.5),
Point(0.0, 1.5))
assert len(res) == 4
def test_triangle_triangle_2d() :
" These two triangles intersect in a common edge"
res = cpp.geometry.IntersectionConstruction.intersection_triangle_triangle_2d(Point(0.4960412972015322, 0.3953317542541379),
Point(0.5, 0.3997044273055517),
Point(0.5, 0.4060889538943557),
Point(0.4960412972015322, 0.3953317542541379),
Point(0.5, 0.4060889538943557),
Point(.5, .5))
for p in res:
print(p[0], p[1])
assert len(res) == 2
@skip_in_parallel
def test_parallel_segments_2d():
" These two segments should be parallel and the intersection computed accordingly"
p0 = Point(0, 0)
p1 = Point(1, 0)
q0 = Point(0.4, 0)
q1 = Point(1.4, 0)
intersection = cpp.geometry.IntersectionConstruction.intersection_segment_segment_2d(p0, p1, q0, q1)
assert len(intersection) == 2
def test_equal_segments_2d():
" These two segments are equal and the intersection computed accordingly"
p0 = Point(DOLFIN_PI / 7., 9. / DOLFIN_PI)
p1 = Point(9. / DOLFIN_PI, DOLFIN_PI / 7.)
q0 = Point(DOLFIN_PI / 7., 9. / DOLFIN_PI)
q1 = Point(9. / DOLFIN_PI, DOLFIN_PI / 7.)
intersection = cpp.geometry.IntersectionConstruction.intersection_segment_segment_2d(p0, p1, q0, q1)
assert len(intersection) == 2
@skip_in_parallel
def test_triangle_segment_2D_1():
"The intersection of a specific triangle and a specific segment"
p0 = Point(1e-30, 0)
p1 = Point(1, 2)
p2 = Point(2, 1)
q0 = Point(1, 0)
q1 = Point(0, 0)
intersection = cpp.geometry.IntersectionConstruction.intersection_triangle_segment_2d(p0, p1, p2, q0, q1)
assert len(intersection) == 1
intersection = cpp.geometry.IntersectionConstruction.intersection_triangle_segment_2d(p0, p1, p2, q1, q0)
assert len(intersection) == 1
def compare_with_cgal(p0, p1, q0, q1, cgal):
intersection = cpp.geometry.IntersectionConstruction.intersection_segment_segment_2d(p0, p1, q0, q1)
#for p in intersection:
# print(*p)
return abs(intersection[0][0] - cgal[0]) < DOLFIN_EPS and \
abs(intersection[0][1] - cgal[1]) < DOLFIN_EPS
@skip_in_parallel
@pytest.mark.skipif(True, reason="This is a case where the intersection currently fails")
def test_segment_segment_1():
"Case that fails CGAL comparison. We get a different intersection point but still correct area."
p0 = Point(-0.50000000000000710543,-0.50000000000000710543)
p1 = Point(0.99999999999999955591,-2)
q0 = Point(0.9142135623730932581,-1.9142135623730944793)
q1 = Point(-0.29289321881346941367,-0.70710678118654635149)
# The intersection should according to CGAL be
cgal = Point(0.91066799144849319703, -1.9106679914484945293)
assert compare_with_cgal(p0, p1, q0, q1, cgal)
@skip_in_parallel
@pytest.mark.skipif(True, reason="This is a case where the intersection currently fails")
def test_segment_segment_2():
"Case that fails CGAL comparison. We get a different intersection point but still correct area."
p0 = Point(0.70710678118654746172,-0.70710678118654746172)
p1 = Point(0.70710678118654612945,0.70710678118654612945)
q0 = Point(0.70710678118654612945,0.70710678118654113344)
q1 = Point(0.70710678118654657354,0.2928932188134645842)
cgal = Point(0.70710678118654612945, 0.7071067811865050512)
assert compare_with_cgal(p0, p1, q0, q1, cgal)
@skip_in_parallel
#@pytest.mark.skipif(True, reason="This test needs to be updated")
def test_segment_segment_3():
"Case that fails CGAL comparison. We get a different intersection point but still correct area."
p0 = Point(0.70710678118654746172,-0.70710678118654746172)
p1 = Point(0.70710678118654612945,0.70710678118654612945)
q0 = Point(0.70710678118654757274,-0.097631072937819973756)
q1 = Point(0.70710678118654257673,-0.1601886205085209236)
cgal = Point(0.70710678118654679558, -0.10611057050352221132)
assert compare_with_cgal(p0, p1, q0, q1, cgal)
@skip_in_parallel
@pytest.mark.skipif(True, reason="This is a case where the intersection currently fails")
def test_segment_segment_4():
"Case that fails CGAL comparison. We get a different intersection point but still correct area."
p0 = Point(0.70710678118654746172,-0.70710678118654746172)
p1 = Point(3.5527136788005009294e-14,3.5527136788005009294e-14)
q0 = Point(0.35355339059326984508,-0.35355339059327078877)
q1 = Point(0.70710678118655057034,-0.70710678118654701763)
cgal = Point(0.67572340116162599166, -0.67572340116162288304)
assert compare_with_cgal(p0, p1, q0, q1, cgal)
@skip_in_parallel
def test_segment_segment_5():
"Case that failed CGAL comparison but passed when scaling the numerator in x = p0 + o / d * v"
p0 = Point(1.1429047494274684563e-12,0.5)
p1 = Point(0.42146018366139809119,0.9214601836602551721)
q0 = Point(0.34292036732279607136,0.8429203673205103442)
q1 = Point(0.3429203673205103442,0.8429203673205103442)
cgal = Point(0.3429203673216533188,0.8429203673205103442)
assert compare_with_cgal(p0, p1, q0, q1, cgal)
@skip_in_parallel
def test_segment_segment_6():
"Test that demonstrates, among other things, that we must check the orientation for p0, p1 in intersection_segment_segment_2d"
p0 = Point(0.045342566799435518599,0.41358248517265505662);
p1 = Point(0.045342566799434436131,0.41358248517265394639);
q0 = Point(1.8601965322712701917e-16,0.5);
q1 = Point(1.873501354054951662e-16,0.3499999999999999778);
intersection = cpp.geometry.IntersectionConstruction.intersection_segment_segment_2d(p0, p1, q0, q1)
assert len(intersection) == 0
|