File: test_HDF5_attribute.py

package info (click to toggle)
dolfin 2018.1.0.post1-16
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 28,764 kB
  • sloc: xml: 104,040; cpp: 98,856; python: 22,511; makefile: 204; sh: 182
file content (115 lines) | stat: -rwxr-xr-x 3,730 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""Unit tests for the Attribute interface of the HDF5 io library"""

# Copyright (C) 2013 Chris Richardson
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.

import pytest
import os
import gc
from dolfin import *
import numpy
from dolfin_utils.test import skip_if_not_HDF5, fixture, tempdir, \
    xfail_with_serial_hdf5_in_parallel, skip_with_serial_hdf5_in_parallel


@pytest.yield_fixture
def attr(tempdir):
    hdf_file = HDF5File(MPI.comm_world, os.path.join(tempdir, "hdf_file.h5"), "w")
    x = Vector(MPI.comm_world, 123)
    hdf_file.write(x, "/a_vector")
    attr = hdf_file.attributes("/a_vector")

    yield attr

    # Destroy everything deterministically
    hdf_file.close()
    del hdf_file, x, attr
    gc.collect()
    MPI.barrier(MPI.comm_world)

@skip_if_not_HDF5
@xfail_with_serial_hdf5_in_parallel
def test_fail_on_accessing_attribute_on_non_existing_dataset(tempdir):
    hdf_file = HDF5File(MPI.comm_world, os.path.join(tempdir, "hdf_file.h5"), "w")
    with pytest.raises(RuntimeError):
        attr = hdf_file.attributes("/a_vector")

@skip_if_not_HDF5
@skip_with_serial_hdf5_in_parallel
def test_read_write_str_attribute(attr):
    attr['name'] = 'Vector'
    assert attr.type_str("name") == "string"
    assert attr['name'] == 'Vector'

@skip_if_not_HDF5
@skip_with_serial_hdf5_in_parallel
def test_read_write_float_attribute(attr):
    attr['val'] = -9.2554
    assert attr.type_str("val") == "float"
    assert attr['val'] == -9.2554

@skip_if_not_HDF5
@skip_with_serial_hdf5_in_parallel
def test_read_write_int_attribute(attr):
    attr['val'] = 1
    assert attr.type_str("val") == "int"
    assert attr['val'] == 1

@skip_if_not_HDF5
@skip_with_serial_hdf5_in_parallel
def test_read_write_vec_float_attribute(attr):
    vec = numpy.array([1,2,3,4.5], dtype='float')
    attr['val'] = vec
    ans = attr['val']
    assert attr.type_str("val") == "vectorfloat"
    assert len(vec) == len(ans)
    for val1, val2 in zip(vec, ans):
        assert val1 == val2

@skip_if_not_HDF5
@skip_with_serial_hdf5_in_parallel
def test_read_write_vec_int_attribute(attr):
    vec = numpy.array([1,2,3,4,5], dtype=numpy.uintp)
    attr['val'] = vec
    ans = attr['val']
    assert attr.type_str("val") == "vectorint"
    assert len(vec) == len(ans)
    for val1, val2 in zip(vec, ans):
        assert val1 == val2

@skip_if_not_HDF5
@skip_with_serial_hdf5_in_parallel
def test_attribute_container_interface(attr):
    names = ["data_0", "data_1", "data_2", "data_3"]
    values = [i for i in range(4)]

    for name, value in zip(names, values):
        attr[name] = value

    # Added from the vector storage call above
    if "partition" in attr:
        names.append("partition")
        values.append(attr["partition"])

    assert(attr.list_attributes() == names)
    for (name0, value0), (name1, value1) in zip(attr.to_dict().items(),
                                                dict(zip(names, values)).items()):
        assert name0 == name1
        if isinstance(value0, numpy.ndarray):
            assert (value0 == value1).all()
        else:
            assert value0 == value1