1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
"""Unit tests for the KrylovSolver interface"""
# Copyright (C) 2014 Garth N. Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
import pytest
from dolfin import *
from dolfin_utils.test import skip_if_not_PETSc, skip_in_parallel, pushpop_parameters
@skip_if_not_PETSc
def test_krylov_samg_solver_elasticity(pushpop_parameters):
"Test PETScKrylovSolver with smoothed aggregation AMG"
# Set backend
parameters["linear_algebra_backend"] = "PETSc"
def build_nullspace(V, x):
"""Function to build null space for 2D elasticity"""
# Create list of vectors for null space
nullspace_basis = [x.copy() for i in range(3)]
# Build translational null space basis
V.sub(0).dofmap().set(nullspace_basis[0], 1.0)
V.sub(1).dofmap().set(nullspace_basis[1], 1.0)
# Build rotational null space basis
V.sub(0).set_x(nullspace_basis[2], -1.0, 1)
V.sub(1).set_x(nullspace_basis[2], 1.0, 0)
for x in nullspace_basis:
x.apply("insert")
null_space = VectorSpaceBasis(nullspace_basis)
null_space.orthonormalize()
return null_space
def amg_solve(N, method):
# Elasticity parameters
E = 1.0e9
nu = 0.3
mu = E/(2.0*(1.0 + nu))
lmbda = E*nu/((1.0 + nu)*(1.0 - 2.0*nu))
# Stress computation
def sigma(v):
return 2.0*mu*sym(grad(v)) + lmbda*tr(sym(grad(v)))*Identity(2)
# Define problem
mesh = UnitSquareMesh(N, N)
V = VectorFunctionSpace(mesh, 'Lagrange', 1)
bc = DirichletBC(V, Constant((0.0, 0.0)),
lambda x, on_boundary: on_boundary)
u = TrialFunction(V)
v = TestFunction(V)
# Forms
a, L = inner(sigma(u), grad(v))*dx, dot(Constant((1.0, 1.0)), v)*dx
# Assemble linear algebra objects
A, b = assemble_system(a, L, bc)
# Create solution function
u = Function(V)
# Create near null space basis and orthonormalize
null_space = build_nullspace(V, u.vector())
# Attached near-null space to matrix
as_backend_type(A).set_near_nullspace(null_space)
# Test that basis is orthonormal
assert null_space.is_orthonormal()
# Create PETSC smoothed aggregation AMG preconditioner, and
# create CG solver
pc = PETScPreconditioner(method)
solver = PETScKrylovSolver("cg", pc)
# Set matrix operator
solver.set_operator(A)
# Compute solution and return number of iterations
return solver.solve(u.vector(), b)
# Set some multigrid smoother parameters
PETScOptions.set("mg_levels_ksp_type", "chebyshev")
PETScOptions.set("mg_levels_pc_type", "jacobi")
# Improve estimate of eigenvalues for Chebyshev smoothing
PETScOptions.set("mg_levels_esteig_ksp_type", "cg")
PETScOptions.set("mg_levels_ksp_chebyshev_esteig_steps", 50)
# Build list of smoothed aggregation preconditioners
methods = ["petsc_amg"]
# if "ml_amg" in PETScPreconditioner.preconditioners():
# methods.append("ml_amg")
# Test iteration count with increasing mesh size for each
# preconditioner
for method in methods:
for N in [8, 16, 32, 64]:
print("Testing method '{}' with {} x {} mesh".format(method, N, N))
niter = amg_solve(N, method)
assert niter < 18
@skip_if_not_PETSc
def test_krylov_reuse_pc():
"Test preconditioner re-use with PETScKrylovSolver"
# Define problem
mesh = UnitSquareMesh(8, 8)
V = FunctionSpace(mesh, 'Lagrange', 1)
bc = DirichletBC(V, Constant(0.0), lambda x, on_boundary: on_boundary)
u = TrialFunction(V)
v = TestFunction(V)
# Forms
a, L = inner(grad(u), grad(v))*dx, dot(Constant(1.0), v)*dx
A, P = PETScMatrix(), PETScMatrix()
b = PETScVector()
# Assemble linear algebra objects
assemble(a, tensor=A)
assemble(a, tensor=P)
assemble(L, tensor=b)
# Apply boundary conditions
bc.apply(A)
bc.apply(P)
bc.apply(b)
# Create Krysolv solver and set operators
solver = PETScKrylovSolver("gmres", "bjacobi")
solver.set_operators(A, P)
# Solve
x = PETScVector()
num_iter_ref = solver.solve(x, b)
# Change preconditioner matrix (bad matrix) and solve (PC will be
# updated)
a_p = u*v*dx
assemble(a_p, tensor=P)
bc.apply(P)
x = PETScVector()
num_iter_mod = solver.solve(x, b)
assert num_iter_mod > num_iter_ref
# Change preconditioner matrix (good matrix) and solve (PC will be
# updated)
a_p = a
assemble(a_p, tensor=P)
bc.apply(P)
x = PETScVector()
num_iter = solver.solve(x, b)
assert num_iter == num_iter_ref
# Change preconditioner matrix (bad matrix) and solve (PC will not
# be updated)
solver.set_reuse_preconditioner(True)
a_p = u*v*dx
assemble(a_p, tensor=P)
bc.apply(P)
x = PETScVector()
num_iter = solver.solve(x, b)
assert num_iter == num_iter_ref
# Update preconditioner (bad PC, will increase iteration count)
solver.set_reuse_preconditioner(False)
x = PETScVector()
num_iter = solver.solve(x, b)
assert num_iter == num_iter_mod
def test_krylov_tpetra():
if not has_linear_algebra_backend("Tpetra"):
return
mesh = UnitCubeMesh(10, 10, 10)
Q = FunctionSpace(mesh, "CG", 1)
v = TestFunction(Q)
u = TrialFunction(Q)
a = dot(grad(u), grad(v))*dx
L = v*dx
def bound(x):
return x[0] == 0
bc = DirichletBC(Q, Constant(0.0), bound)
A = TpetraMatrix()
b = TpetraVector()
assemble(a, A)
assemble(L, b)
bc.apply(A)
bc.apply(b)
mp = MueluPreconditioner()
mlp = mp.parameters
mlp['verbosity'] = 'extreme'
mlp.add("max_levels", 10)
mlp.add("coarse:_max_size", 10)
mlp.add("coarse:_type", "KLU2")
mlp.add("multigrid_algorithm", "sa")
mlp.add("aggregation:_type", "uncoupled")
mlp.add("aggregation:_min_agg_size", 3)
mlp.add("aggregation:_max_agg_size", 7)
pre_paramList = Parameters("smoother:_pre_params")
pre_paramList.add("relaxation:_type", "Symmetric Gauss-Seidel")
pre_paramList.add("relaxation:_sweeps", 1)
pre_paramList.add("relaxation:_damping_factor", 0.6)
mlp.add("smoother:_pre_type", "RELAXATION")
mlp.add(pre_paramList)
post_paramList = Parameters("smoother:_post_params")
post_paramList.add("relaxation:_type", "Symmetric Gauss-Seidel")
post_paramList.add("relaxation:_sweeps", 1)
post_paramList.add("relaxation:_damping_factor", 0.9)
mlp.add("smoother:_post_type", "RELAXATION")
mlp.add(post_paramList)
solver = BelosKrylovSolver("cg", mp)
solver.parameters['relative_tolerance'] = 1e-8
solver.parameters['monitor_convergence'] = False
solver.parameters['belos'].add("Maximum_Iterations", 150)
solver.set_operator(A)
u = TpetraVector()
n_iter = solver.solve(u, b)
# Number of iterations should be around 15
assert n_iter < 50
|