1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
"""Unit tests for the KrylovSolver interface"""
# Copyright (C) 2016 Nate Sime
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
import pytest
from dolfin import *
from dolfin_utils.test import skip_if_not_PETsc_or_not_slepc, fixture
# Stiffness and mass bilinear formulations
def k(u, v):
return inner(grad(u), grad(v))*dx
def m(u, v):
return dot(u, v)*dx
# Wrappers around SLEPcEigenSolver for test_slepc_eigensolver_gen_hermitian
def SLEPcEigenSolverOperatorsFromInit(K, M):
return SLEPcEigenSolver(K, M)
def SLEPcEigenSolverOperatorsFromSetOperators(K, M):
slepc_eigen_solver = SLEPcEigenSolver(K.mpi_comm())
slepc_eigen_solver.set_operators(K, M)
return slepc_eigen_solver
# Fixtures
@fixture
def mesh():
return UnitSquareMesh(32, 32)
@fixture
def V(mesh):
return FunctionSpace(mesh, "CG", 1)
@fixture
def V_vec(mesh):
return VectorFunctionSpace(mesh, "CG", 1)
@fixture
def K_M(V):
u, v = TrialFunction(V), TestFunction(V)
K_mat, M_mat = PETScMatrix(), PETScMatrix()
x0 = PETScVector()
L = Constant(0.0)*v*dx
assemble_system(k(u, v), L, bcs=[], A_tensor=K_mat, b_tensor=x0)
assemble_system(m(u, v), L, bcs=[], A_tensor=M_mat, b_tensor=x0)
return K_mat, M_mat
@fixture
def K_M_vec(V_vec):
u, v = TrialFunction(V_vec), TestFunction(V_vec)
K_mat, M_mat = PETScMatrix(), PETScMatrix()
x0 = PETScVector()
L = dot(Constant([0.0]*V_vec.mesh().geometry().dim()), v)*dx
assemble_system(k(u, v), L, bcs=[], A_tensor=K_mat, b_tensor=x0)
assemble_system(m(u, v), L, bcs=[], A_tensor=M_mat, b_tensor=x0)
return K_mat, M_mat
# Tests
@skip_if_not_PETsc_or_not_slepc
def test_set_from_options():
"Test SLEPc options prefixes"
prefix = "my_slepc_"
solver = SLEPcEigenSolver(MPI.comm_world)
solver.set_options_prefix(prefix)
solver.set_from_options()
assert solver.get_options_prefix() == prefix
@skip_if_not_PETsc_or_not_slepc
@pytest.mark.parametrize("SLEPcEigenSolverWrapper", (SLEPcEigenSolverOperatorsFromInit, SLEPcEigenSolverOperatorsFromSetOperators))
def test_slepc_eigensolver_gen_hermitian(K_M, SLEPcEigenSolverWrapper):
"Test SLEPc eigen solver"
K, M = K_M
esolver = SLEPcEigenSolverWrapper(K, M)
esolver.parameters["solver"] = "krylov-schur"
esolver.parameters["spectral_transform"] = 'shift-and-invert'
esolver.parameters['spectral_shift'] = 0.0
esolver.parameters["problem_type"] = "gen_hermitian"
nevs = 20
esolver.solve(nevs)
# Test default eigenvalue
re_0, im_0 = esolver.get_eigenvalue(0)
assert near(re_0, 0.0, eps=1e-12)
assert near(im_0, 0.0)
re_0, im_0, v_re_0, v_im_0 = esolver.get_eigenpair(0)
assert near(re_0, 0.0, eps=1e-12)
assert near(im_0, 0.0)
assert v_re_0.norm("l2") > 0.0
assert near(v_im_0.norm("l2"), 0.0)
# Test remaining eigenvalues and eigenpairs
for j in range(1, nevs):
re, im = esolver.get_eigenvalue(j)
assert re > 0.0
assert near(im, 0.0)
for j in range(1, nevs):
re, im, v_re, v_im = esolver.get_eigenpair(j)
assert re > 0.0
assert near(im, 0.0)
assert v_re.norm("l2") > 0.0
assert near(v_im.norm("l2"), 0.0)
@skip_if_not_PETsc_or_not_slepc
def test_slepc_null_space(K_M, V):
"Test SLEPc eigen solver with nullspace as PETScVector"
K, M = K_M
esolver = SLEPcEigenSolver(K, M)
esolver.parameters["solver"] = "jacobi-davidson"
esolver.parameters["problem_type"] = "gen_hermitian"
u0 = Function(V)
nullspace_basis = as_backend_type(u0.vector().copy())
V.dofmap().set(nullspace_basis, 1.0)
esolver.set_deflation_space(VectorSpaceBasis([nullspace_basis]))
nevs = 20
esolver.solve(nevs)
for j in range(1, nevs):
re, im, v_re, v_im = esolver.get_eigenpair(j)
assert re > 0.0
assert near(im, 0.0)
assert v_re.norm("l2") > 0.0
assert near(v_im.norm("l2"), 0.0)
@skip_if_not_PETsc_or_not_slepc
def test_slepc_vector_null_space(K_M_vec, V_vec):
"Test SLEPc eigen solver with nullspace as VectorSpaceBasis"
def build_nullspace(V, x):
nullspace_basis = [x.copy() for i in range(2)]
V.sub(0).dofmap().set(nullspace_basis[0], 1.0)
V.sub(1).dofmap().set(nullspace_basis[1], 1.0)
for x in nullspace_basis:
x.apply("insert")
# Create vector space basis and orthogonalize
basis = VectorSpaceBasis(nullspace_basis)
basis.orthonormalize()
return basis
K, M = K_M_vec
esolver = SLEPcEigenSolver(K, M)
esolver.parameters["solver"] = "jacobi-davidson"
esolver.parameters["problem_type"] = "gen_hermitian"
u0 = Function(V_vec)
nullspace_basis = build_nullspace(V_vec, u0.vector())
esolver.set_deflation_space(nullspace_basis)
nevs = 20
esolver.solve(nevs)
for j in range(1, nevs):
re, im, v_re, v_im = esolver.get_eigenpair(j)
assert re > 0.0
assert near(im, 0.0)
assert v_re.norm("l2") > 0.0
assert near(v_im.norm("l2"), 0.0)
@skip_if_not_PETsc_or_not_slepc
def test_slepc_initial_space(K_M, V):
"Test SLEPc eigen solver with inital space as PETScVector"
K, M = K_M
esolver = SLEPcEigenSolver(K, M)
esolver.parameters["solver"] = "jacobi-davidson"
esolver.parameters["problem_type"] = "gen_hermitian"
u0 = as_backend_type(interpolate(Constant(2.0), V).vector())
esolver.set_initial_space(VectorSpaceBasis([u0]))
nevs = 20
esolver.solve(nevs)
for j in range(1, nevs):
re, im, v_re, v_im = esolver.get_eigenpair(j)
assert re > 0.0
assert near(im, 0.0)
assert v_re.norm("l2") > 0.0
assert near(v_im.norm("l2"), 0.0)
@skip_if_not_PETsc_or_not_slepc
def test_slepc_vector_initial_space(K_M_vec, V_vec):
"Test SLEPc eigen solver with initial space as VectorSpaceBasis"
K, M = K_M_vec
esolver = SLEPcEigenSolver(K, M)
esolver.parameters["solver"] = "jacobi-davidson"
esolver.parameters["problem_type"] = "gen_hermitian"
u0 = as_backend_type(interpolate(Constant((2.0, 1.0)), V_vec).vector())
u1 = as_backend_type(interpolate(Constant((0.0, -4.0)), V_vec).vector())
initial_space = VectorSpaceBasis([u0, u1])
esolver.set_initial_space(initial_space)
nevs = 20
esolver.solve(nevs)
for j in range(1, nevs):
re, im, v_re, v_im = esolver.get_eigenpair(j)
assert re > 0.0
assert near(im, 0.0)
assert v_re.norm("l2") > 0.0
assert near(v_im.norm("l2"), 0.0)
|