File: test_slepc_solver.py

package info (click to toggle)
dolfin 2018.1.0.post1-16
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 28,764 kB
  • sloc: xml: 104,040; cpp: 98,856; python: 22,511; makefile: 204; sh: 182
file content (243 lines) | stat: -rwxr-xr-x 7,215 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""Unit tests for the KrylovSolver interface"""

# Copyright (C) 2016 Nate Sime
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.

import pytest
from dolfin import *
from dolfin_utils.test import skip_if_not_PETsc_or_not_slepc, fixture

# Stiffness and mass bilinear formulations

def k(u, v):
    return inner(grad(u), grad(v))*dx

def m(u, v):
    return dot(u, v)*dx

# Wrappers around SLEPcEigenSolver for test_slepc_eigensolver_gen_hermitian
def SLEPcEigenSolverOperatorsFromInit(K, M):
    return SLEPcEigenSolver(K, M)

def SLEPcEigenSolverOperatorsFromSetOperators(K, M):
    slepc_eigen_solver = SLEPcEigenSolver(K.mpi_comm())
    slepc_eigen_solver.set_operators(K, M)
    return slepc_eigen_solver

# Fixtures

@fixture
def mesh():
    return UnitSquareMesh(32, 32)

@fixture
def V(mesh):
    return FunctionSpace(mesh, "CG", 1)

@fixture
def V_vec(mesh):
    return VectorFunctionSpace(mesh, "CG", 1)

@fixture
def K_M(V):
    u, v = TrialFunction(V), TestFunction(V)
    K_mat, M_mat = PETScMatrix(), PETScMatrix()
    x0 = PETScVector()
    L = Constant(0.0)*v*dx
    assemble_system(k(u, v), L, bcs=[], A_tensor=K_mat, b_tensor=x0)
    assemble_system(m(u, v), L, bcs=[], A_tensor=M_mat, b_tensor=x0)
    return K_mat, M_mat

@fixture
def K_M_vec(V_vec):
    u, v = TrialFunction(V_vec), TestFunction(V_vec)
    K_mat, M_mat = PETScMatrix(), PETScMatrix()
    x0 = PETScVector()
    L = dot(Constant([0.0]*V_vec.mesh().geometry().dim()), v)*dx
    assemble_system(k(u, v), L, bcs=[], A_tensor=K_mat, b_tensor=x0)
    assemble_system(m(u, v), L, bcs=[], A_tensor=M_mat, b_tensor=x0)
    return K_mat, M_mat


# Tests

@skip_if_not_PETsc_or_not_slepc
def test_set_from_options():
    "Test SLEPc options prefixes"

    prefix = "my_slepc_"
    solver = SLEPcEigenSolver(MPI.comm_world)
    solver.set_options_prefix(prefix)
    solver.set_from_options()

    assert solver.get_options_prefix() == prefix

@skip_if_not_PETsc_or_not_slepc
@pytest.mark.parametrize("SLEPcEigenSolverWrapper", (SLEPcEigenSolverOperatorsFromInit, SLEPcEigenSolverOperatorsFromSetOperators))
def test_slepc_eigensolver_gen_hermitian(K_M, SLEPcEigenSolverWrapper):
    "Test SLEPc eigen solver"

    K, M = K_M
    esolver = SLEPcEigenSolverWrapper(K, M)

    esolver.parameters["solver"] = "krylov-schur"
    esolver.parameters["spectral_transform"] = 'shift-and-invert'
    esolver.parameters['spectral_shift'] = 0.0
    esolver.parameters["problem_type"] = "gen_hermitian"

    nevs = 20
    esolver.solve(nevs)

    # Test default eigenvalue
    re_0, im_0 = esolver.get_eigenvalue(0)
    assert near(re_0, 0.0, eps=1e-12)
    assert near(im_0, 0.0)

    re_0, im_0, v_re_0, v_im_0 = esolver.get_eigenpair(0)
    assert near(re_0, 0.0, eps=1e-12)
    assert near(im_0, 0.0)
    assert v_re_0.norm("l2") > 0.0
    assert near(v_im_0.norm("l2"), 0.0)

    # Test remaining eigenvalues and eigenpairs
    for j in range(1, nevs):
        re, im = esolver.get_eigenvalue(j)
        assert re > 0.0
        assert near(im, 0.0)

    for j in range(1, nevs):
        re, im, v_re, v_im = esolver.get_eigenpair(j)
        assert re > 0.0
        assert near(im, 0.0)
        assert v_re.norm("l2") > 0.0
        assert near(v_im.norm("l2"), 0.0)


@skip_if_not_PETsc_or_not_slepc
def test_slepc_null_space(K_M, V):
    "Test SLEPc eigen solver with nullspace as PETScVector"

    K, M = K_M
    esolver = SLEPcEigenSolver(K, M)

    esolver.parameters["solver"] = "jacobi-davidson"
    esolver.parameters["problem_type"] = "gen_hermitian"

    u0 = Function(V)
    nullspace_basis = as_backend_type(u0.vector().copy())
    V.dofmap().set(nullspace_basis, 1.0)
    esolver.set_deflation_space(VectorSpaceBasis([nullspace_basis]))

    nevs = 20
    esolver.solve(nevs)

    for j in range(1, nevs):
        re, im, v_re, v_im = esolver.get_eigenpair(j)
        assert re > 0.0
        assert near(im, 0.0)
        assert v_re.norm("l2") > 0.0
        assert near(v_im.norm("l2"), 0.0)


@skip_if_not_PETsc_or_not_slepc
def test_slepc_vector_null_space(K_M_vec, V_vec):
    "Test SLEPc eigen solver with nullspace as VectorSpaceBasis"

    def build_nullspace(V, x):
        nullspace_basis = [x.copy() for i in range(2)]

        V.sub(0).dofmap().set(nullspace_basis[0], 1.0)
        V.sub(1).dofmap().set(nullspace_basis[1], 1.0)

        for x in nullspace_basis:
            x.apply("insert")

        # Create vector space basis and orthogonalize
        basis = VectorSpaceBasis(nullspace_basis)
        basis.orthonormalize()

        return basis

    K, M = K_M_vec
    esolver = SLEPcEigenSolver(K, M)

    esolver.parameters["solver"] = "jacobi-davidson"
    esolver.parameters["problem_type"] = "gen_hermitian"

    u0 = Function(V_vec)
    nullspace_basis = build_nullspace(V_vec, u0.vector())
    esolver.set_deflation_space(nullspace_basis)

    nevs = 20
    esolver.solve(nevs)

    for j in range(1, nevs):
        re, im, v_re, v_im = esolver.get_eigenpair(j)
        assert re > 0.0
        assert near(im, 0.0)
        assert v_re.norm("l2") > 0.0
        assert near(v_im.norm("l2"), 0.0)


@skip_if_not_PETsc_or_not_slepc
def test_slepc_initial_space(K_M, V):
    "Test SLEPc eigen solver with inital space as PETScVector"

    K, M = K_M
    esolver = SLEPcEigenSolver(K, M)

    esolver.parameters["solver"] = "jacobi-davidson"
    esolver.parameters["problem_type"] = "gen_hermitian"

    u0 = as_backend_type(interpolate(Constant(2.0), V).vector())
    esolver.set_initial_space(VectorSpaceBasis([u0]))

    nevs = 20
    esolver.solve(nevs)

    for j in range(1, nevs):
        re, im, v_re, v_im = esolver.get_eigenpair(j)
        assert re > 0.0
        assert near(im, 0.0)
        assert v_re.norm("l2") > 0.0
        assert near(v_im.norm("l2"), 0.0)


@skip_if_not_PETsc_or_not_slepc
def test_slepc_vector_initial_space(K_M_vec, V_vec):
    "Test SLEPc eigen solver with initial space as VectorSpaceBasis"

    K, M = K_M_vec
    esolver = SLEPcEigenSolver(K, M)

    esolver.parameters["solver"] = "jacobi-davidson"
    esolver.parameters["problem_type"] = "gen_hermitian"

    u0 = as_backend_type(interpolate(Constant((2.0, 1.0)), V_vec).vector())
    u1 = as_backend_type(interpolate(Constant((0.0, -4.0)), V_vec).vector())
    initial_space = VectorSpaceBasis([u0, u1])
    esolver.set_initial_space(initial_space)

    nevs = 20
    esolver.solve(nevs)

    for j in range(1, nevs):
        re, im, v_re, v_im = esolver.get_eigenpair(j)
        assert re > 0.0
        assert near(im, 0.0)
        assert v_re.norm("l2") > 0.0
        assert near(v_im.norm("l2"), 0.0)