File: test_PETScSNES_solver.py

package info (click to toggle)
dolfin 2018.1.0.post1-16
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 28,764 kB
  • sloc: xml: 104,040; cpp: 98,856; python: 22,511; makefile: 204; sh: 182
file content (272 lines) | stat: -rwxr-xr-x 9,154 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""Unit test for the SNES nonlinear solver"""

# Copyright (C) 2012 Patrick E. Farrell
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2012-10-17
# Last changed: 2016-10-26

"""Solve the Yamabe PDE which arises in the differential geometry of
general relativity. http://arxiv.org/abs/1107.0360.

The Yamabe equation is highly nonlinear and supports many
solutions. However, only one of these is of physical relevance -- the
positive solution.

This unit test demonstrates the capability of the SNES solver to
accept bounds on the resulting solution. The plain Newton method
converges to an unphysical negative solution, while the SNES solution
with {sign: nonnegative} converges to the physical positive solution.

An alternative interface to SNESVI allows the user to set explicitly
more complex bounds as GenericVectors or Function.
"""

from dolfin import *
import pytest
import os
import numbers

from dolfin_utils.test import *

parameter_degree = set_parameters_fixture("form_compiler.quadrature_degree", \
                                          [5])
parameter_backend = set_parameters_fixture("linear_algebra_backend", ["PETSc"])

@fixture
def mesh(datadir):
    return Mesh(os.path.join(datadir, "doughnut.xml"))

@fixture
def V(mesh):
    return FunctionSpace(mesh, "CG", 1)

@fixture
def bcs(V):
    return [DirichletBC(V, 1.0, "on_boundary")]

@fixture
def u(V):
    u = Function(V)
    u.interpolate(Constant(-1000.0))
    return u

@fixture
def v(V):
    return TestFunction(V)

@fixture
def F(u, v, mesh):
    x = SpatialCoordinate(mesh)
    r = sqrt(x[0]**2 + x[1]**2)
    rho = 1.0/r**3

    return (8*inner(grad(u), grad(v))*dx + rho * inner(u**5, v)*dx \
            + (-1.0/8.0)*inner(u, v)*dx)

@fixture
def J(V, u, F):
    du = TrialFunction(V)
    return derivative(F, u, du)

@fixture
def lb(V):
    return interpolate(Constant(0.), V)

@fixture
def ub(V):
    return interpolate(Constant(100.), V)

@fixture
def newton_solver_parameters():
    return{"nonlinear_solver": "newton",
           "newton_solver": {"linear_solver": "lu",
                             "maximum_iterations": 100,
                             "report": False}}

@fixture
def snes_solver_parameters_sign():
    return {"nonlinear_solver": "snes",
            "snes_solver": {"linear_solver": "lu",
                            "maximum_iterations": 100,
                            "sign": "nonnegative",
                            "report": True}}

@fixture
def snes_solver_parameters_bounds():
    return {"nonlinear_solver": "snes",
            "snes_solver": {"linear_solver": "lu",
                            "maximum_iterations": 100,
                            "sign": "default",
                            "report": True}}


@skip_if_not_PETSc
def test_snes_solver(F, bcs, u, snes_solver_parameters_sign, parameter_degree,\
                     parameter_backend):
    u.interpolate(Constant(-1000.0))
    solve(F == 0, u, bcs, solver_parameters=snes_solver_parameters_sign)
    assert u.vector().min() >= 0


@skip_if_not_PETSc
def test_newton_solver(F, u, bcs, newton_solver_parameters, parameter_degree,\
                       parameter_backend):
    u.interpolate(Constant(-1000.0))
    solve(F == 0, u, bcs, solver_parameters=newton_solver_parameters)
    assert u.vector().min() < 0


@skip_if_not_PETSc
@pytest.mark.skipif(not has_krylov_solver_preconditioner('amg'),
                    reason="This test requires amg.")
def test_preconditioner_interface(V, parameter_backend):
    "Test nonlinear solvers preconditioner interface"
    class Problem(NonlinearProblem):
        def __init__(self, V):
            NonlinearProblem.__init__(self)

            u = Function(V)
            u_ = TrialFunction(V)
            v = TestFunction(V)
            L = Constant(1.0)*v*dx
            bc = DirichletBC(V, 0, lambda x, b: b)

            # Nonlinear problem and its Jacobian
            F = (1.0+u*u)*inner(grad(u), grad(v))*dx - L
            J = derivative(F, u)

            # Preconditioner form
            J_pc = inner(grad(u_), grad(v))*dx

            assembler = SystemAssembler(J, F, bc)
            assembler_pc = SystemAssembler(J_pc, F, bc)

            self.u = u
            self.assembler = assembler
            self.assembler_pc = assembler_pc

        def F(self, b, x):
            self.assembler.assemble(b, x)

        def J(self, A, x):
            self.assembler.assemble(A)

        def J_pc(self, P, x):
            # Assemble preconditioner only once
            if P.empty():
                self.assembler_pc.assemble(P)
                del self.assembler_pc

    class MyNewtonSolver(NewtonSolver):
        def converged(self, r, p, i):
            self._converged_called = True
            assert isinstance(r, GenericVector)
            assert isinstance(p, NonlinearProblem)
            assert isinstance(i, numbers.Integral)
            return super(MyNewtonSolver, self).converged(r, p, i)
        def solver_setup(self, A, J, p, i):
            self._solver_setup_called = True
            assert isinstance(A, cpp.la.GenericMatrix)
            assert isinstance(J, cpp.la.GenericMatrix)
            assert isinstance(p, NonlinearProblem)
            assert isinstance(i, numbers.Integral)
            super(MyNewtonSolver, self).solver_setup(A, J, p, i)
        def update_solution(self, x, dx, rp, p, i):
            self._update_solution_called = True
            assert isinstance(x, cpp.la.GenericVector)
            assert isinstance(dx, cpp.la.GenericVector)
            assert isinstance(rp, float)
            assert isinstance(p, NonlinearProblem)
            assert isinstance(i, numbers.Integral)
            super(MyNewtonSolver, self).update_solution(x, dx, rp, p, i)
        @property
        def check_overloads_called(self):
            assert getattr(self, "_converged_called", False)
            assert getattr(self, "_solver_setup_called", False)
            assert getattr(self, "_update_solution_called", False)

    class MyPETScNewtonSolver(MyNewtonSolver):
        def __init__(self):
            self.petsc_solver = PETScKrylovSolver()
            NewtonSolver.__init__(self, V.mesh().mpi_comm(),
                self.petsc_solver, PETScFactory.instance())
        def update_solution(self, x, dx, rp, p, i):
            self._update_solution_called = True
            assert self.linear_solver() is self.petsc_solver
            super().update_solution(x, dx, rp, p, i)


    for solverclass in [NewtonSolver, MyNewtonSolver, MyPETScNewtonSolver, PETScSNESSolver]:
        problem = Problem(V)
        x = problem.u.vector()

        solver = solverclass()
        solver.parameters["linear_solver"] = "cg"
        solver.parameters["preconditioner"] = "amg"
        solver.parameters["krylov_solver"]["monitor_convergence"] = True
        solver.parameters["report"] = True

        # Check that subsequent solutions work and reuse preconditioner
        solver.solve(problem, x)
        x.zero()
        solver.solve(problem, x)

        # Check that overloading NewtonSolver members works
        getattr(solver, "check_overloads_called", None)


@skip_if_not_PETSc
def test_snes_solver_bound_vectors(F, u, bcs, J,
                                   snes_solver_parameters_bounds,
                                   lb, ub, parameter_degree,
                                   parameter_backend):
    u.interpolate(Constant(-1000.0))
    problem = NonlinearVariationalProblem(F, u, bcs, J)
    problem.set_bounds(lb, ub)

    solver = NonlinearVariationalSolver(problem)
    solver.parameters.update(snes_solver_parameters_bounds)
    u.interpolate(Constant(-1000.0))
    solver.solve()
    u.interpolate(Constant(-1000.0))
    solver.solve()
    assert u.vector().min() >= 0


@skip_if_not_PETSc
def test_snes_solver_bound_vectors(F, u, bcs, J,
                                   snes_solver_parameters_bounds,
                                   lb, ub, parameter_degree,
                                   parameter_backend):
    problem = NonlinearVariationalProblem(F, u, bcs, J)
    problem.set_bounds(lb, ub)

    solver = NonlinearVariationalSolver(problem)
    solver.parameters.update(snes_solver_parameters_bounds)
    u.interpolate(Constant(-1000.0))
    solver.solve()
    u.interpolate(Constant(-1000.0))
    solver.solve()
    assert u.vector().min() >= 0


@skip_if_not_PETSc
def test_snes_set_from_options():
    solver = PETScSNESSolver()
    PETScOptions.set("snes_atol", 1e-12)
    solver.set_from_options()