1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
"""Unit tests for the TAOLinearBoundSolver interface"""
# Copyright (C) 2013 Corrado Maurini
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 03/09/2012
# Last changed: 2013-04-04
# Begin demo
# Corrado Maurini
#
# This example solve the bound constrained minimization problem
# in the domain (x,y) in [0,Lx]x[0,Ly]
#
# min F(u) with 0<=u<=1 and u(0,y)= 0, u(Lx,y) = 1
#
# where F(u) is the quadratic functionaldefined by the form
#
# F(u) = 3./4.*(ell/2.*inner(grad(u), grad(u))+ 2./ell*usol)*dx
#
# An analytical is available:
# u(x,y) = 0 for 0<x<1-ell, u(x,y) = (x-(1-ell))^2 for 1-ell<x<Lx
# and the value of the functional at the solution usol is F(usol)=Ly
# for any value of ell, with 0<ell<Lx.
from dolfin import *
import pytest
from dolfin_utils.test import *
backend = set_parameters_fixture("linear_algebra_backend", ["PETSc"])
@skip_if_not_PETSc
def test_tao_linear_bound_solver(backend):
"Test TAOLinearBoundSolver"
# Create mesh and define function space
Lx = 1.0; Ly = 0.1
mesh = RectangleMesh(Point(0, 0), Point(Lx, Ly), 100, 10)
V = FunctionSpace(mesh, "Lagrange", 1)
# Define Dirichlet boundaries
def left(x,on_boundary):
return on_boundary and near(x[0], 0.0)
def right(x,on_boundary):
return on_boundary and near(x[0], Lx)
# Define boundary conditions
zero = Constant(0.0)
one = Constant(1.0)
bc_l = DirichletBC(V, zero, left)
bc_r = DirichletBC(V, one, right)
bc = [bc_l, bc_r]
# Define variational problem
usol = Function(V)
u = TrialFunction(V)
v = TestFunction(V)
cv = Constant(3.0/4.0)
ell = Constant(0.5) # This should be smaller than Lx
F = cv*(ell/2.0*inner(grad(usol), grad(usol))*dx + 2.0/ell*usol*dx)
# Weak form
a = cv*ell*inner(grad(u), grad(v))*dx
L = -cv*2*v/ell*dx
# Assemble the linear system
A, b = assemble_system(a, L, bc)
# Define the upper and lower bounds
upperbound = interpolate(Constant(1.), V)
lowerbound = interpolate(Constant(0.), V)
xu = upperbound.vector()
xl = lowerbound.vector()
# Take the PETScVector of the solution function
xsol = usol.vector()
solver = TAOLinearBoundSolver("tron", "cg")
solver.solve(A,xsol,b,xl,xu)
solver.solve(A,xsol,b,xl,xu)
# Test that F(usol) = Ly
assert round(assemble(F) - Ly, 4) == 0
|