1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
"""This demo program solves Poisson's equation
- div grad u(x, y) = f(x, y)
on the unit square with source f given by
f(x, y) = exp(-100(x^2 + y^2))
and homogeneous Dirichlet boundary conditions.
Note that we use a simplified error indicator, ignoring
edge (jump) terms and the size of the interpolation constant.
"""
# Copyright (C) 2008 Rolv Erlend Bredesen
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg 2008-2011
from dolfin import *
from numpy import array, sqrt
from math import pow
TOL = 5e-4 # Error tolerance
REFINE_RATIO = 0.50 # Refine 50 % of the cells in each iteration
MAX_ITER = 20 # Maximal number of iterations
# Create initial mesh
mesh = UnitSquareMesh(4, 4)
source_str = "exp(-100.0*(pow(x[0], 2) + pow(x[1], 2)))"
source = eval("lambda x: " + source_str)
# Adaptive algorithm
for level in range(MAX_ITER):
# Define variational problem
V = FunctionSpace(mesh, "CG", 1)
v = TestFunction(V)
u = TrialFunction(V)
f = Expression(source_str, degree=2)
a = dot(grad(v), grad(u))*dx
L = v*f*dx
# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, DomainBoundary())
# Compute solution
u = Function(V)
solve(a == L, u, bc)
# Compute error indicators
h = array([c.h() for c in cells(mesh)])
K = array([c.volume() for c in cells(mesh)])
R = array([abs(source([c.midpoint().x(), c.midpoint().y()])) for c in cells(mesh)])
gamma = h*R*sqrt(K)
# Compute error estimate
E = sum([g*g for g in gamma])
E = sqrt(MPI.sum(mesh.mpi_comm(), E))
print("Level %d: E = %g (TOL = %g)" % (level, E, TOL))
# Check convergence
if E < TOL:
info("Success, solution converged after %d iterations" % level)
break
# Mark cells for refinement
cell_markers = MeshFunction("bool", mesh, mesh.topology().dim())
gamma_0 = sorted(gamma, reverse=True)[int(len(gamma)*REFINE_RATIO)]
gamma_0 = MPI.max(mesh.mpi_comm(), gamma_0)
for c in cells(mesh):
cell_markers[c] = gamma[c.index()] > gamma_0
# Refine mesh
mesh = refine(mesh, cell_markers)
# Plot mesh
plot(mesh)
|