File: demo_adaptive-poisson.py

package info (click to toggle)
dolfin 2019.2.0~git20201207.b495043-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 30,988 kB
  • sloc: xml: 104,040; cpp: 102,020; python: 24,139; makefile: 300; javascript: 226; sh: 185
file content (94 lines) | stat: -rwxr-xr-x 2,814 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
"""This demo program solves Poisson's equation

    - div grad u(x, y) = f(x, y)

on the unit square with source f given by

    f(x, y) = exp(-100(x^2 + y^2))

and homogeneous Dirichlet boundary conditions.

Note that we use a simplified error indicator, ignoring
edge (jump) terms and the size of the interpolation constant.
"""

# Copyright (C) 2008 Rolv Erlend Bredesen
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg 2008-2011


from dolfin import *
from numpy import array, sqrt
from math import pow

TOL = 5e-4           # Error tolerance
REFINE_RATIO = 0.50  # Refine 50 % of the cells in each iteration
MAX_ITER = 20        # Maximal number of iterations

# Create initial mesh
mesh = UnitSquareMesh(4, 4)
source_str = "exp(-100.0*(pow(x[0], 2) + pow(x[1], 2)))"
source = eval("lambda x: " + source_str)

# Adaptive algorithm
for level in range(MAX_ITER):

    # Define variational problem
    V = FunctionSpace(mesh, "CG", 1)
    v = TestFunction(V)
    u = TrialFunction(V)
    f = Expression(source_str, degree=2)
    a = dot(grad(v), grad(u))*dx
    L = v*f*dx

    # Define boundary condition
    u0 = Constant(0.0)
    bc = DirichletBC(V, u0, DomainBoundary())

    # Compute solution
    u = Function(V)
    solve(a == L, u, bc)

    # Compute error indicators
    h = array([c.h() for c in cells(mesh)])
    K = array([c.volume() for c in cells(mesh)])
    R = array([abs(source([c.midpoint().x(), c.midpoint().y()])) for c in cells(mesh)])
    gamma = h*R*sqrt(K)

    # Compute error estimate
    E = sum([g*g for g in gamma])
    E = sqrt(MPI.sum(mesh.mpi_comm(), E))
    print("Level %d: E = %g (TOL = %g)" % (level, E, TOL))

    # Check convergence
    if E < TOL:
        info("Success, solution converged after %d iterations" % level)
        break

    # Mark cells for refinement
    cell_markers = MeshFunction("bool", mesh, mesh.topology().dim())
    gamma_0 = sorted(gamma, reverse=True)[int(len(gamma)*REFINE_RATIO)]
    gamma_0 = MPI.max(mesh.mpi_comm(), gamma_0)
    for c in cells(mesh):
        cell_markers[c] = gamma[c.index()] > gamma_0

    # Refine mesh
    mesh = refine(mesh, cell_markers)

    # Plot mesh
    plot(mesh)