1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
|
from dolfin import *
# Create mesh and define function space
mesh = UnitCubeMesh(32, 32, 32)
marker = MeshFunction("size_t", mesh, mesh.topology().dim()-2, 0)
for e in edges(mesh):
marker[e] = 0.5 - DOLFIN_EPS < e.midpoint().z() < 0.5 + DOLFIN_EPS and 0.5 - DOLFIN_EPS < e.midpoint().y() < 0.5 + DOLFIN_EPS
submesh = MeshView.create(marker, 1)
V1 = FunctionSpace(mesh, "Lagrange", 1) ## 3D
V2 = FunctionSpace(submesh, "Lagrange", 1) ## 1D
# Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x):
return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS
# Define boundary condition
u0 = Constant(0.0)
# 3D mesh
bc_3D = DirichletBC(V1, u0, boundary)
# 1D submesh
bc_1D = DirichletBC(V2, u0, boundary)
# Define variational problem
# 3D
u_3D = TrialFunction(V1)
v_3D = TestFunction(V1)
# 1D
u_1D = TrialFunction(V2)
v_1D = TestFunction(V2)
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) ) / 0.02)", degree=2)
a_3D = inner(grad(u_3D), grad(v_3D))*dx
L_3D = f*v_3D*dx
u_3D = Function(V1)
solve(a_3D == L_3D, u_3D, bc_3D)
a_1D = inner(grad(u_1D), grad(v_1D))*dx
L_1D = f*v_1D*dx
u_1D = Function(V2)
solve(a_1D == L_1D, u_1D, bc_1D)
# Save solution in vtk format
out_3D = File("meshview-mapping-3D1D-3Dsol.pvd")
out_3D << u_3D
out_1D = File("meshview-mapping-3D1D-1Dsol.pvd")
out_1D << u_1D
|