1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
# Copyright (C) 2008 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 2008-10-17
# Last changed: 2012-11-12
from dolfin import *
import matplotlib.pyplot as plt
# Create mesh
mesh = UnitSquareMesh(16, 16)
# Define function spaces
P1 = FunctionSpace(mesh, "CG", 1)
P0 = FunctionSpace(mesh, "DG", 0)
# Define test and trial functions
v1 = TestFunction(P1)
w1 = TrialFunction(P1)
w0 = TestFunction(P0)
# Define functions
u = Function(P1)
z = Function(P1)
f = Constant(1.0)
p = Function(P0)
u0 = Expression("x[0]*(1.0 - x[0])*x[1]*(1.0 - x[1])", degree=2)
# Dirichlet boundary
class DirichletBoundary(SubDomain):
def inside(self, x, on_boundary):
return on_boundary
# Boundary condition
bc = DirichletBC(P1, u0, DirichletBoundary())
# Goal functional
J = (u - u0)*(u - u0)*dx(mesh)
# Forward problem
problem = (inner(grad(v1), p*grad(w1))*dx, v1*f*dx)
# Adjoint problem
adjoint = (inner(grad(w1), p*grad(v1))*dx, -2*v1*(u - u0)*dx)
# Update of parameter
gradient = -inner(grad(z), w0*grad(u))*dx
px = p.vector()
# Set initial value for parameter
px[:] = 1.0
# Iterate until convergence
for i in range(100):
# Solve forward problem
A = assemble(problem[0])
b = assemble(problem[1])
bc.apply(A, b)
solve(A, u.vector(), b)
# Solve adjoint problem
A = assemble(adjoint[0])
b = assemble(adjoint[1])
bc.apply(A, b)
solve(A, z.vector(), b)
# Update parameter
dp = assemble(gradient)
dp *= 100.0
px -= dp
# Print value of functional
jval = assemble(J)
print("J = ", jval)
print(u.vector().max())
# Plot solution and parameter
plt.figure(); plot(u, title="Solution")
plt.figure(); plot(z, title="Adjoint")
plt.figure(); plot(p, title="Parameter")
plt.figure(); plot(u0, mesh=mesh, title="Target")
plt.show()
|