File: demo_optimization.py

package info (click to toggle)
dolfin 2019.2.0~git20201207.b495043-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 30,988 kB
  • sloc: xml: 104,040; cpp: 102,020; python: 24,139; makefile: 300; javascript: 226; sh: 185
file content (99 lines) | stat: -rw-r--r-- 2,457 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (C) 2008 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2008-10-17
# Last changed: 2012-11-12


from dolfin import *
import matplotlib.pyplot as plt


# Create mesh
mesh = UnitSquareMesh(16, 16)

# Define function spaces
P1 = FunctionSpace(mesh, "CG", 1)
P0 = FunctionSpace(mesh, "DG", 0)

# Define test and trial functions
v1 = TestFunction(P1)
w1 = TrialFunction(P1)
w0 = TestFunction(P0)

# Define functions
u  = Function(P1)
z  = Function(P1)
f  = Constant(1.0)
p  = Function(P0)
u0 = Expression("x[0]*(1.0 - x[0])*x[1]*(1.0 - x[1])", degree=2)

# Dirichlet boundary
class DirichletBoundary(SubDomain):
    def inside(self, x, on_boundary):
        return on_boundary

# Boundary condition
bc = DirichletBC(P1, u0, DirichletBoundary())

# Goal functional
J = (u - u0)*(u - u0)*dx(mesh)

# Forward problem
problem = (inner(grad(v1), p*grad(w1))*dx, v1*f*dx)

# Adjoint problem
adjoint = (inner(grad(w1), p*grad(v1))*dx, -2*v1*(u - u0)*dx)

# Update of parameter
gradient = -inner(grad(z), w0*grad(u))*dx
px = p.vector()

# Set initial value for parameter
px[:] = 1.0

# Iterate until convergence
for i in range(100):

    # Solve forward problem
    A = assemble(problem[0])
    b = assemble(problem[1])
    bc.apply(A, b)
    solve(A, u.vector(), b)

    # Solve adjoint problem
    A = assemble(adjoint[0])
    b = assemble(adjoint[1])
    bc.apply(A, b)
    solve(A, z.vector(), b)

    # Update parameter
    dp = assemble(gradient)
    dp *= 100.0
    px -= dp

    # Print value of functional
    jval = assemble(J)
    print("J = ", jval)
    print(u.vector().max())

# Plot solution and parameter
plt.figure(); plot(u,  title="Solution")
plt.figure(); plot(z,  title="Adjoint")
plt.figure(); plot(p,  title="Parameter")
plt.figure(); plot(u0, mesh=mesh, title="Target")
plt.show()