File: demo_special-functions.py

package info (click to toggle)
dolfin 2019.2.0~git20201207.b495043-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 30,988 kB
  • sloc: xml: 104,040; cpp: 102,020; python: 24,139; makefile: 300; javascript: 226; sh: 185
file content (60 lines) | stat: -rw-r--r-- 2,200 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""This demo program plots a bunch of nonlinear
special functions that are available in UFL."""

# Copyright (C) 2010 Martin S. Alnaes
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2011-10-24
# Last changed: 2011-10-24


from dolfin import *
import matplotlib.pyplot as plt


# Form compiler options
parameters["form_compiler"]["optimize"]     = True
parameters["form_compiler"]["cpp_optimize"] = True

n = 100
eps = 1e-8

mesh = IntervalMesh(n, -2.0, +2.0)
x = SpatialCoordinate(mesh)[0]

plot(cos(x), title='cos', mesh=mesh)
plot(sin(x), title='sin', mesh=mesh)
plot(tan(x), title='tan', mesh=mesh)

mesh = IntervalMesh(n, 0.0+eps, 1.0-eps)
x = SpatialCoordinate(mesh)[0]

plt.figure(); plot(acos(x), title='acos', mesh=mesh)
plt.figure(); plot(asin(x), title='asin', mesh=mesh)
plt.figure(); plot(atan(x), title='atan', mesh=mesh)
plt.figure(); plot(exp(x), title='exp', mesh=mesh)
plt.figure(); plot(ln(x), title='ln', mesh=mesh)
plt.figure(); plot(sqrt(x), title='sqrt', mesh=mesh)
plt.figure(); plot(bessel_J(0, x), title='bessel_J(0, x)', mesh=mesh)
plt.figure(); plot(bessel_J(1, x), title='bessel_J(1, x)', mesh=mesh)
plt.figure(); plot(bessel_Y(0, x), title='bessel_Y(0, x)', mesh=mesh)
plt.figure(); plot(bessel_Y(1, x), title='bessel_Y(1, x)', mesh=mesh)
plt.figure(); plot(bessel_I(0, x), title='bessel_I(0, x)', mesh=mesh)
plt.figure(); plot(bessel_I(1, x), title='bessel_I(1, x)', mesh=mesh)
plt.figure(); plot(bessel_K(0, x), title='bessel_K(0, x)', mesh=mesh)
plt.figure(); plot(bessel_K(1, x), title='bessel_K(1, x)', mesh=mesh)
plt.show()