File: demo_sym-dirichlet-bc.py

package info (click to toggle)
dolfin 2019.2.0~git20201207.b495043-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 30,988 kB
  • sloc: xml: 104,040; cpp: 102,020; python: 24,139; makefile: 300; javascript: 226; sh: 185
file content (76 lines) | stat: -rw-r--r-- 2,049 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""This demo demonstrate how to assemble a linear system including
boundary conditions."""

# Copyright (C) 2008 Kent-Andre Mardal
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kristian Oelgaard 2008
# Modified by Anders Logg 2011
#
# First added:  2008-08-13
# Last changed: 2012-11-12

from dolfin import *
import matplotlib.pyplot as plt

# Create mesh and finite element
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "CG", 1)

# Source term
class Source(UserExpression):
    def eval(self, values, x):
        dx = x[0] - 0.5
        dy = x[1] - 0.5
        values[0] = 500.0*exp(-(dx*dx + dy*dy)/0.02)

# Neumann boundary condition
class Flux(UserExpression):
    def eval(self, values, x):
        if x[0] > DOLFIN_EPS:
            values[0] = 25.0*sin(5.0*DOLFIN_PI*x[1])
        else:
            values[0] = 0.0

# Sub domain for Dirichlet boundary condition
class DirichletBoundary(SubDomain):
    def inside(self, x, on_boundary):
        return on_boundary and x[0] < DOLFIN_EPS

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Source(degree=2)
g = Flux(degree=2)
a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds

# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, DirichletBoundary())

# Compute solution
u = Function(V)
solve(a == L, u, bc)

# Save solution to file
file = File("poisson.pvd")
file << u

# Plot solution
plot(u)
plt.show()