1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
# Copyright (C) 2015 Jan Blechta
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
from dolfin import *
# Let's solve some variational problem to get non-trivial timings
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)
bc = DirichletBC(V, 0.0, lambda x: near(x[0], 0.0) or near(x[0], 1.0))
u, v = TrialFunction(V), TestFunction(V)
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)", degree=2)
g = Expression("sin(5*x[0])", degree=2)
a = inner(grad(u), grad(v))*dx
L = f*v*dx + g*v*ds
u = Function(V)
solve(a == L, u, bc)
# List timings; average across processes in parallel
list_timings(TimingClear.keep, [TimingType.wall, TimingType.system])
# Get Table object with timings
t = timings(TimingClear.keep,
[TimingType.wall, TimingType.user, TimingType.system])
# Use different MPI reductions
t_sum = MPI.sum(MPI.comm_world, t)
t_min = MPI.min(MPI.comm_world, t)
t_max = MPI.max(MPI.comm_world, t)
t_avg = MPI.avg(MPI.comm_world, t)
# Print aggregate timings to screen
print('\n'+t_sum.str(True))
print('\n'+t_min.str(True))
print('\n'+t_max.str(True))
print('\n'+t_avg.str(True))
# Store to XML file on rank 0
if MPI.rank(MPI.comm_world) == 0:
f = File(MPI.comm_self, "timings_aggregate.xml")
f << t_sum
f << t_min
f << t_max
f << t_avg
# Store timings of each rank separately
f = File(MPI.comm_self, "timings_rank_%d.xml"
% MPI.rank(MPI.comm_world))
f << t
# Helper function for storing rank-wise average, min and max
dump_timings_to_xml("timings_avg_min_max.xml", TimingClear.clear)
|