1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
"""Unit tests for the Vector interface"""
# Copyright (C) 2011-2014 Garth N. Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg 2011
import pytest
import numpy
from copy import copy
from dolfin import *
from dolfin_utils.test import *
# TODO: Use the fixture setup from matrix in a shared conftest.py when
# we move tests to one flat folder.
# Lists of backends supporting or not supporting GenericVector::data()
# access
data_backends = []
no_data_backends = ["PETSc", "Tpetra"]
# Add serial only backends
if MPI.size(MPI.comm_world) == 1:
# TODO: What about "Dense" and "Sparse"? The sub_backend wasn't
# used in the old test.
data_backends += ["Eigen"]
# Remove backends we haven't built with
data_backends = list(filter(has_linear_algebra_backend, data_backends))
no_data_backends = list(filter(has_linear_algebra_backend, no_data_backends))
any_backends = data_backends + no_data_backends
# Fixtures setting up and resetting the global linear algebra backend
# for a list of backends
data_backend = set_parameters_fixture("linear_algebra_backend", data_backends)
no_data_backend = set_parameters_fixture("linear_algebra_backend",
no_data_backends)
any_backend = set_parameters_fixture("linear_algebra_backend", any_backends)
class TestVectorForAnyBackend:
def test_create_empty_vector(self, any_backend):
v0 = Vector()
info(v0)
info(v0, True)
assert v0.size() == 0
def test_create_vector(self, any_backend):
n = 301
v1 = Vector(MPI.comm_world, n)
assert v1.size() == n
def test_copy_vector(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v1 = Vector(v0)
assert v0.size() == n
del v0
assert v1.size() == n
def test_assign_and_copy_vector(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v0[:] = 1.0
assert v0.sum() == n
v1 = Vector(v0)
del v0
assert v1.sum() == n
def test_zero(self, any_backend):
v0 = Vector(MPI.comm_world, 301)
v0.zero()
assert v0.sum() == 0.0
def test_apply(self, any_backend):
v0 = Vector(MPI.comm_world, 301)
v0.apply("insert")
v0.apply("add")
def test_str(self, any_backend):
v0 = Vector(MPI.comm_world, 13)
tmp = v0.str(False)
tmp = v0.str(True)
def test_init_range(self, any_backend):
n = 301
local_range = MPI.local_range(MPI.comm_world, n)
v0 = Vector(MPI.comm_world)
v0.init(local_range)
assert v0.local_range() == local_range
def test_size(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, 301)
assert v0.size() == n
def test_local_size(self, any_backend):
n = 301
local_range = MPI.local_range(MPI.comm_world, n)
v0 = Vector(MPI.comm_world)
v0.init(local_range)
assert v0.local_size() == local_range[1] - local_range[0]
def test_owns_index(self, any_backend):
m, n = 301, 25
v0 = Vector(MPI.comm_world, m)
local_range = v0.local_range()
in_range = local_range[0] <= n < local_range[1]
assert v0.owns_index(n) == in_range
#def test_set(self, any_backend):
#def test_add(self, any_backend):
def test_get_local(self, any_backend):
from numpy import empty
n = 301
v0 = Vector(MPI.comm_world, n)
data = v0.get_local()
def test_set_local(self, any_backend):
from numpy import zeros
n = 301
v0 = Vector(MPI.comm_world, n)
data = zeros((v0.local_size()), dtype='d')
v0.set_local(data)
data = zeros((v0.local_size()*2), dtype='d')
def test_add_local(self, any_backend):
from numpy import zeros
n = 301
v0 = Vector(MPI.comm_world, n)
data = zeros((v0.local_size()), dtype='d')
v0.add_local(data)
data = zeros((v0.local_size()*2), dtype='d')
def test_gather(self, any_backend):
# Gather not implemented in Eigen
if any_backend == "Eigen" or any_backend == "Tpetra":
return
# Create distributed vector of local size 1
x = DefaultFactory().create_vector(MPI.comm_world)
r = MPI.rank(x.mpi_comm())
x.init((r, r+1))
# Create local vector
y = DefaultFactory().create_vector(MPI.comm_self)
# Do the actual test across all rank permutations
for target_rank in range(MPI.size(x.mpi_comm())):
# Set nonzero value on single rank
if r == target_rank:
x[0] = 42.0 # Set using local index
else:
x[0] = 0.0 # Set using local index
assert numpy.isclose(x.sum(), 42.0)
# Gather (using global index) and check the result
x.gather(y, numpy.array([target_rank], dtype=la_index_dtype()))
assert numpy.isclose(y[0], 42.0)
# NumPy array version
out = x.gather(numpy.array([target_rank], dtype=la_index_dtype()))
assert out.shape == (1,) and numpy.isclose(out[0], 42.0)
# Test gather on zero
out = x.gather_on_zero()
if r == 0:
expected = numpy.array([42.0 if i == target_rank else 0.0
for i in range(x.size())])
else:
expected = numpy.array([])
assert out.shape == expected.shape and numpy.allclose(out, expected)
# Test also the corner case of empty indices on one process
if r == target_rank:
out = x.gather(numpy.array([], dtype=la_index_dtype()))
expected = numpy.array([])
else:
out = x.gather(numpy.array([target_rank], dtype=la_index_dtype()))
expected = numpy.array([42.0])
assert out.shape == expected.shape and numpy.allclose(out, expected)
# Check that distributed gather vector is not accepted
if MPI.size(MPI.comm_world) > 1:
z = DefaultFactory().create_vector(MPI.comm_world)
with pytest.raises(RuntimeError):
x.gather(z, numpy.array([0], dtype=la_index_dtype()))
# Check that gather vector of wrong size is not accepted
z = DefaultFactory().create_vector(MPI.comm_self)
z.init(3)
with pytest.raises(RuntimeError):
x.gather(z, numpy.array([0], dtype=la_index_dtype()))
def test_axpy(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v0[:] = 1.0
v1 = Vector(v0)
v0.axpy(2.0, v1)
assert v0.sum() == 2*n + n
def test_abs(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v0[:] = -1.0
v0.abs()
assert v0.sum() == n
def test_inner(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v0[:] = 2.0
v1 = Vector(MPI.comm_world, n)
v1[:] = 3.0
assert v0.inner(v1) == 6*n
def test_norm(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v0[:] = -2.0
assert v0.norm("l1") == 2.0*n
assert v0.norm("l2") == sqrt(4.0*n)
assert v0.norm("linf") == 2.0
def test_min(self, any_backend):
v0 = Vector(MPI.comm_world, 301)
v0[:] = 2.0
assert v0.min() == 2.0
def test_max(self, any_backend):
v0 = Vector(MPI.comm_world,301)
v0[:] = -2.0
assert v0.max() == -2.0
def test_sum(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v0[:] = -2.0
assert v0.sum() == -2.0*n
def test_sum_entries(self, any_backend):
from numpy import zeros
n = 301
v0 = Vector(MPI.comm_world, n)
v0[:] = -2.0
entries = zeros(5, dtype='uintp')
assert v0.sum(entries) == -2.0
entries[0] = 2
entries[1] = 1
entries[2] = 236
entries[3] = 123
entries[4] = 97
assert v0.sum(entries) == -2.0*5
def test_scalar_mult(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v0[:] = -1.0
v0 *= 2.0
assert v0.sum() == -2.0*n
def test_vector_element_mult(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v1 = Vector(MPI.comm_world, n)
v0[:] = -2.0
v1[:] = 3.0
v0 *= v1
assert v0.sum() == -6.0*n
def test_scalar_divide(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v0[:] = -1.0
v0 /= -2.0
assert v0.sum() == 0.5*n
def test_vector_add(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v1 = Vector(MPI.comm_world, n)
v0[:] = -1.0
v1[:] = 2.0
v0 += v1
assert v0.sum() == n
def test_scalar_add(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v1 = Vector(MPI.comm_world, n)
v0[:] = -1.0
v0 += 2.0
assert v0.sum() == n
v0 -= 2.0
assert v0.sum() == -n
v0 = v0 + 3.0
assert v0.sum() == 2*n
v0 = v0 - 1.0
assert v0.sum() == n
def test_vector_subtract(self, any_backend):
n = 301
v0 = Vector(MPI.comm_world, n)
v1 = Vector(MPI.comm_world, n)
v0[:] = -1.0
v1[:] = 2.0
v0 -= v1
assert v0.sum() == -3.0*n
def test_vector_assignment(self, any_backend):
m, n = 301, 345
v0 = Vector(MPI.comm_world, m)
v1 = Vector(MPI.comm_world, n)
v0[:] = -1.0
v1[:] = 2.0
v0 = v1
assert v0.sum() == 2.0*n
def test_vector_assignment_length(self, any_backend):
# Test that assigning vectors of different lengths fails
m, n = 301, 345
v0 = Vector(MPI.comm_world, m)
v1 = Vector(MPI.comm_world, n)
def wrong_assignment(v0, v1):
v0[:] = v1
with pytest.raises(RuntimeError):
wrong_assignment(v0, v1)
def test_vector_assignment_length(self, any_backend):
# Test that assigning with diffrent parallel layouts fails
if MPI.size(MPI.comm_world) > 1:
m = 301
local_range0 = MPI.local_range(MPI.comm_world, m)
print("local range", local_range0[0], local_range0[1])
# Shift parallel partitiong but preserve global size
if MPI.rank(MPI.comm_world) == 0:
local_range1 = (local_range0[0], local_range0[1] + 1)
elif MPI.rank(MPI.comm_world) == MPI.size(MPI.comm_world) - 1:
local_range1 = (local_range0[0] + 1, local_range0[1])
else:
local_range1 = (local_range0[0] + 1, local_range0[1] + 1)
v0 = Vector(MPI.comm_world)
v0.init(local_range0)
v1 = Vector(MPI.comm_world)
v1.init(local_range1)
assert v0.size() == v1.size()
def wrong_assignment(v0, v1):
v0[:] = v1
with pytest.raises(RuntimeError):
wrong_assignment(v0, v1)
# Test the access of the raw data through pointers
# This is only available for Eigen backend
def test_vector_data(self, data_backend):
# Test for ordinary Vector
v = Vector(MPI.comm_world, 301)
v = as_backend_type(v)
rw_array = v.array_view()
assert rw_array.flags.owndata == False
with pytest.raises(Exception):
rw_array.resize([10])
# Check that the array is a writable view
rw_array[0] = 42
ro_array = v.get_local()
assert ro_array[0] == 42
# Test for as_backend_type Vector
v = as_backend_type(v)
rw_array2 = v.array_view()
assert (rw_array2 == ro_array).all()
# xfail on TypeError
xfail_type = pytest.mark.xfail(strict=True, raises=TypeError)
xfail_type_py3 = pytest.mark.xfail(strict=True, raises=TypeError)
# some systems (32 bit arches) do not have numpy.float128
try:
test_float128 = numpy.float128(42.0)
except AttributeError:
test_float128 = numpy.longdouble(42.0)
@pytest.mark.parametrize("operand",
[int(42), 42.0, numpy.sin(1.0), numpy.float(42.0),
numpy.float64(42.0), numpy.float_(42.0),
numpy.int(42.0), numpy.long(42.0),
numpy.float16(42.0), numpy.float16(42.0),
numpy.float32(42.0), test_float128,
numpy.longfloat(42.0), numpy.int8(42.0),
numpy.int16(42.0), numpy.int32(42.0),
numpy.intc(42.0), numpy.longdouble(42.0),
numpy.int0(42.0), numpy.int64(42.0),
numpy.int_(42.0), numpy.longlong(42.0),
])
def test_vector_type_priority_with_numpy(self, any_backend, operand):
"""Test that DOLFIN return types are prefered over NumPy types for
binary operations on NumPy objects
"""
def _test_binary_ops(v, operand):
assert isinstance(v + operand, cpp.la.GenericVector)
assert isinstance(v - operand, cpp.la.GenericVector)
assert isinstance(v*operand, cpp.la.GenericVector)
assert isinstance(v/operand, cpp.la.GenericVector)
assert isinstance(operand + v, cpp.la.GenericVector)
assert isinstance(operand - v, cpp.la.GenericVector)
assert isinstance(operand*v, cpp.la.GenericVector)
assert isinstance(v+v, cpp.la.GenericVector)
assert isinstance(v-v, cpp.la.GenericVector)
assert isinstance(v*v, cpp.la.GenericVector)
v += v.copy(); assert isinstance(v, cpp.la.GenericVector)
v -= v.copy(); assert isinstance(v, cpp.la.GenericVector)
v *= v.copy(); assert isinstance(v, cpp.la.GenericVector)
v += operand; assert isinstance(v, cpp.la.GenericVector)
v -= operand; assert isinstance(v, cpp.la.GenericVector)
v *= operand; assert isinstance(v, cpp.la.GenericVector)
v /= operand; assert isinstance(v, cpp.la.GenericVector)
op = copy(operand); op += v; assert isinstance(op, cpp.la.GenericVector)
op = copy(operand); op -= v; assert isinstance(op, cpp.la.GenericVector)
op = copy(operand); op *= v; assert isinstance(op, cpp.la.GenericVector)
# Test with vector wrapper
v = Vector(MPI.comm_world, 8)
_test_binary_ops(v, operand)
# Test with vector casted to backend type
v = as_backend_type(v)
_test_binary_ops(v, operand)
|