1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
# -*- coding: utf-8 -*-
"""Unit tests for the MultiMeshFunction class"""
# Copyright (C) 2016 Jørgen S. Dokken
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
#
# First added: 2016-06-11
# Last changed: 2017-07-18
import pytest
from dolfin import *
import ufl
import numpy
from dolfin_utils.test import fixture, skip_in_parallel
@fixture
def multimesh():
mesh_0 = RectangleMesh(Point(0,0), Point(1, 1), 20, 20)
mesh_1 = RectangleMesh(Point(numpy.pi/10,numpy.pi/9),
Point(numpy.pi/8,numpy.pi/7),5,8)
multimesh = MultiMesh()
multimesh.add(mesh_0)
multimesh.add(mesh_1)
multimesh.build()
return multimesh
@fixture
def V(multimesh):
element = FiniteElement("Lagrange", triangle, 1)
return MultiMeshFunctionSpace(multimesh, element)
@fixture
def V_high(multimesh):
element = FiniteElement("Lagrange", triangle, 3)
return MultiMeshFunctionSpace(multimesh, element)
@fixture
def V_vector(multimesh):
return MultiMeshVectorFunctionSpace(multimesh,"CG", 1)
@fixture
def e_x():
return Expression(("1.0","0.0"), degree=1)
@fixture
def f_vec2():
return Expression(("sin(x[1])","1.0"), degree=3)
@fixture
def v_vec(V_vector):
return MultiMeshFunction(V_vector)
@fixture
def f_vec():
return Expression(("x[0]","x[1]"),degree=2)
@fixture
def f():
return Expression("sin(pi*x[0])*cos(2*pi*x[1])", degree=4)
@fixture
def f_2():
return Expression("x[0]*x[1]",degree=2)
@fixture
def v(V):
return MultiMeshFunction(V)
@fixture
def v_high(V_high):
return MultiMeshFunction(V_high)
@skip_in_parallel
def test_measure_mul(v, multimesh):
assert isinstance(v*dX, ufl.form.Form)
@skip_in_parallel
def test_assemble_zero(v, multimesh):
assert numpy.isclose(assemble_multimesh(v*dX), 0)
@skip_in_parallel
def test_assemble_area(v, multimesh):
v.vector()[:] = 1
assert numpy.isclose(assemble_multimesh(v*dX), 1)
@skip_in_parallel
def test_assemble_exterior_facet(v, multimesh):
v.vector()[:] = 1
assert numpy.isclose(assemble_multimesh(v*ds), 4)
@skip_in_parallel
def test_interpolate(v_high, f):
v_high.interpolate(f)
assert numpy.isclose(assemble_multimesh(v_high*dX), 0)
@skip_in_parallel
def test_project(f, V_high):
v = project(f ,V_high)
assert numpy.isclose(assemble_multimesh(v*dX), 0)
@skip_in_parallel
def test_errornorm_L2(f_2, v_high):
const = Expression("1", degree=1)
v_high.interpolate(f_2)
assert numpy.isclose(errornorm(const, v_high, norm_type="L2", degree_rise=3), numpy.sqrt(22)/6)
@skip_in_parallel
def test_errornorm_H1(f, f_2, v_high):
v_high.interpolate(f_2)
assert numpy.isclose(errornorm(f, v_high, norm_type="H1", degree_rise=3), numpy.sqrt(37./36+5*numpy.pi**2/4))
@skip_in_parallel
def test_vector_space(v_vec,e_x,f_vec2,V_vector,f_vec):
v_vec.interpolate(e_x)
assert numpy.isclose(assemble_multimesh(inner(f_vec,v_vec)*dX), 0.5)
v_vec.interpolate(f_vec)
print((assemble_multimesh(inner(v_vec, f_vec2)*dX),
1/2 + numpy.sin(1/2)*numpy.sin(1/2)))
assert numpy.isclose(assemble_multimesh(inner(v_vec, f_vec2)*dX),
1/2 + numpy.sin(1/2)*numpy.sin(1/2))
|