1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
"Unit tests for multimesh coefficients"
# Copyright (C) 2006 Magne Nordaas
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by August Johansson 2017
#
# First added: 2017-04-02
# Last changed: 2017-06-20
import pytest
from dolfin import *
from dolfin_utils.test import fixture, skip_in_parallel
@fixture
def mesh0():
return UnitSquareMesh(2,2)
@fixture
def mesh1():
return RectangleMesh(Point(0.25, 0.25), Point(0.75, 0.75), 2, 2)
@fixture
def multimesh(mesh0, mesh1):
multimesh = MultiMesh()
multimesh.add(mesh0)
multimesh.add(mesh1)
multimesh.build()
return multimesh
@fixture
def V(multimesh):
return MultiMeshFunctionSpace(multimesh, "P", 1)
@fixture
def V0(mesh0):
return FunctionSpace(mesh0, "P", 1)
@fixture
def V1(mesh1):
return FunctionSpace(mesh1, "P", 1)
@fixture
def f(V, V0, V1):
f = MultiMeshFunction(V)
f.assign_part(0, interpolate(Constant(1.0), V0))
f.assign_part(1, interpolate(Constant(2.0), V1))
return f
@fixture
def g():
return Constant(0.5)
@fixture
def h(V, V0, V1):
h = MultiMeshFunction(V)
h.assign_part(0, interpolate(Constant(1.0), V0))
h.assign_part(1, interpolate(Constant(1.5), V1))
return h
@skip_in_parallel
def test_dX_integral(f, g, h):
f_dX = assemble_multimesh(f * dX)
assert abs(f_dX - 1.25) < DOLFIN_EPS_LARGE
fgh_dX = assemble_multimesh(f*g*h * dX)
assert abs(fgh_dX - 0.75) < DOLFIN_EPS_LARGE
@skip_in_parallel
def test_dI_integral(f, g, h):
f_dI0 = assemble_multimesh(f("-") * dI)
assert abs(f_dI0 - 4.0) < DOLFIN_EPS_LARGE
f_dI1 = assemble_multimesh(f("+") * dI)
assert abs(f_dI1 - 2.0) < DOLFIN_EPS_LARGE
fgh_dI0 = assemble_multimesh(f("-")*g("-")*h("-") * dI)
assert abs(fgh_dI0 - 3.0) < DOLFIN_EPS_LARGE
fgh_dI1 = assemble_multimesh(f("+")*g("+")*h("+") * dI)
assert abs(fgh_dI1 - 1.0) < DOLFIN_EPS_LARGE
@skip_in_parallel
def test_dO_integral(f, g, h):
f_dO0 = assemble_multimesh(f("-") * dO)
assert abs(f_dO0 - 0.50) < DOLFIN_EPS_LARGE
f_dO1 = assemble_multimesh(f("+") * dO)
assert abs(f_dO1 - 0.25) < DOLFIN_EPS_LARGE
fgh_dO0 = assemble_multimesh(f("-")*g("-")*h("-") * dO)
assert abs(fgh_dO0 - 0.375) < DOLFIN_EPS_LARGE
fgh_dO1 = assemble_multimesh(f("+")*g("+")*h("+") * dO)
assert abs(fgh_dO1 - 0.125) < DOLFIN_EPS_LARGE
|