1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
"""Unit tests for multimesh volume computation"""
# Copyright (C) 2016 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by August Johansson 2016
# Modified by Simon Funke 2017
#
# First added: 2016-05-03
# Last changed: 2017-05-25
import pytest
from dolfin import *
from dolfin_utils.test import skip_in_parallel
def compute_volume(multimesh):
# Reference volume computation
v0 = multimesh.compute_volume()
# Create function space for DG volume computation
V = MultiMeshFunctionSpace(multimesh, "DG", 0)
# Create and evaluate volume functional
v = TestFunction(V)
M = v*dX
v1 = sum(assemble(M).get_local())
# Alternative volume computation
dXmm = dx(domain=multimesh) + dC(domain=multimesh)
M = Constant(1.0)*dXmm
v2 = assemble_multimesh(M)
# FIXME: We could be able to tighten the tolerance here
assert abs(v0 - v1) / v0 < 0.005
assert abs(v0 - v2) / v0 < 0.005
return v0
@skip_in_parallel
def test_volume_2d():
"Integrate volume of union of 2D meshes"
# Number of meshes on top of background mesh
num_meshes = 8
# Create background mesh so we can easily compute volume
mesh_0 = UnitSquareMesh(1, 1)
mesh_0.scale(10.0)
mesh_0.translate(Point(-5, -5))
exact_volume = 100.0
# Create meshes with centres distributed around the unit circle.
# Meshes are scaled by a factor 2 so that they overlap.
meshes = []
for i in range(num_meshes):
mesh = UnitSquareMesh(1, 1)
angle = 2.*pi*float(i) / float(num_meshes)
print("i, angle", i, angle)
mesh.translate(Point(-0.5, -0.5))
mesh.scale(2.0)
mesh.rotate(180.0*angle / pi)
mesh.translate(Point(cos(angle), sin(angle)))
meshes.append(mesh)
# Save meshes to file so we can examine them
#File('output/background_mesh.pvd') << mesh_0
#vtkfile = File('output/meshes.pvd')
#for mesh in meshes:
# vtkfile << mesh
# Create multimesh
multimesh = MultiMesh()
for mesh in [mesh_0] + meshes:
multimesh.add(mesh)
multimesh.build()
# Compute approximate volume
approximative_volume = compute_volume(multimesh)
print("exact volume ", exact_volume)
print("approximative volume ", approximative_volume)
print("relative approximate volume error %1.16e" % ((exact_volume - approximative_volume) / exact_volume))
assert abs(exact_volume - approximative_volume) / exact_volume < 0.005
@skip_in_parallel
def test_volume_2d_4_meshes():
"Test with four meshes that previously failed"
# Create multimesh
multimesh = MultiMesh()
# Mesh size
h = 0.25
Nx = int(round(1 / h))
# Background mesh
mesh_0 = UnitSquareMesh(Nx, Nx)
multimesh.add(mesh_0)
# Mesh 1
x0 = 0.35404867974764142602
y0 = 0.16597416632155614913
x1 = 0.63997881656511634851
y1 = 0.68786139026650294781
mesh_1 = RectangleMesh(Point(x0, y0), Point(x1, y1),
max(int(round((x1-x0)/h)), 1), max(int(round((y1-y0)/h)), 1))
mesh_1.rotate(39.609407484349517858)
multimesh.add(mesh_1)
# Mesh 2
x0 = 0.33033712968711609337
y0 = 0.22896817104377231722
x1 = 0.82920109332967595339
y1 = 0.89337241458397931293
mesh_2 = RectangleMesh(Point(x0, y0), Point(x1, y1),
max(int(round((x1-x0)/h)), 1), max(int(round((y1-y0)/h)), 1))
mesh_2.rotate(31.532416069662392744)
multimesh.add(mesh_2)
# Mesh 3
x0 = 0.28105941241656401397
y0 = 0.30745787374091237965
x1 = 0.61959648394007071914
y1 = 0.78600209801737319637
mesh_3 = RectangleMesh(Point(x0, y0), Point(x1, y1),
max(int(round((x1-x0)/h)), 1), max(int(round((y1-y0)/h)), 1))
mesh_3.rotate(40.233022128340330426)
multimesh.add(mesh_3)
multimesh.build()
exact_volume = 1
approximate_volume = compute_volume(multimesh)
print("exact volume ", exact_volume)
print("approximative volume ", approximate_volume)
print("approximate volume error %1.16e" % (exact_volume - approximate_volume))
assert abs(exact_volume - approximate_volume) < 1e-8
@skip_in_parallel
def test_volume_2d_six_meshes():
"Integrate volume of six 2D meshes"
# Number of elements
Nx = 8
h = 1. / Nx
# Background mesh
mesh_0 = UnitSquareMesh(Nx, Nx)
# 5 meshes plus background mesh
num_meshes = 5
# List of points for generating the meshes on top
points = [[ Point(0.747427, 0.186781), Point(0.849659, 0.417130) ],
[ Point(0.152716, 0.471681), Point(0.455943, 0.741585) ],
[ Point(0.464473, 0.251876), Point(0.585051, 0.533569) ],
[ Point(0.230112, 0.511897), Point(0.646974, 0.892193) ],
[ Point(0.080362, 0.422675), Point(0.580151, 0.454286) ]]
angles = [ 88.339755, 94.547259, 144.366564, 172.579922, 95.439692 ]
# Create multimesh
multimesh = MultiMesh()
multimesh.add(mesh_0)
# Add the 5 background meshes
for i in range(num_meshes):
nx = max(int(round(abs(points[i][0].x()-points[i][1].x()) / h)), 1)
ny = max(int(round(abs(points[i][0].y()-points[i][1].y()) / h)), 1)
mesh = RectangleMesh(points[i][0], points[i][1], nx, ny)
mesh.rotate(angles[i])
multimesh.add(mesh)
multimesh.build()
# Save meshes to file
#vtkfile = File('output/test_six_meshes.pvd')
#for i in range(multimesh.num_parts()):
# vtkfile << multimesh.part(i)
exact_volume = 1.0
approximate_volume = compute_volume(multimesh)
print("exact volume ", exact_volume)
print("approximative volume ", approximate_volume)
print("approximate volume error %1.16e" % (exact_volume - approximate_volume))
assert abs(exact_volume - approximate_volume) < 1e-6
|