File: plot.py

package info (click to toggle)
dolfin 2019.2.0~legacy20240219.1c52e83-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 31,700 kB
  • sloc: xml: 104,040; cpp: 102,227; python: 24,356; sh: 460; makefile: 330; javascript: 226
file content (259 lines) | stat: -rw-r--r-- 9,427 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python

"""
This script parses logs/bench.log and create plots for each case with
the timings function of time (date plot). It also creates a web page
index.html for easy viewing of the generated plots.
"""

# Copyright (C) 2010 Johannes Ring
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2010-04-06
# Last changed: 2010-04-13

from __future__ import print_function
import os
import re
import time
import datetime
import textwrap
import numpy
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

# Change some of the default Matplotlib parameters
plt.rcParams.update({'figure.figsize': [6, 4],
                     'font.size' : 10,
                     'axes.labelsize' : 10,
                     'axes.grid': True,
                     'text.fontsize' : 10,
                     'legend.fontsize' : 8,
                     'xtick.labelsize' : 8,
                     'ytick.labelsize' : 8,
                     })

# Write to web page index.html
outfile = open("index.html", "w")
outfile.write("<h1><big>DOLFIN Benchmarks</big></h1>\n")
outfile.write("Last updated: %s.\n\n" % time.asctime())

# Open and read in logs/bench.log
benchlog = "logs/bench.log"
lines = open(benchlog, 'r').readlines()

benchmarks = {}
pattern = r"\((.*)\)\s+(.*)\s+(.*)\s+\"(.*)\""

# Extract data from logfile
print("Parsing %s..." % benchlog)
for line in lines:
    match = re.search(pattern, line)
    if match:
        year, month, day, hour, minute, second = \
              [int(i) for i in match.group(1).split(',')]
        #date = datetime.datetime(year, month, day, hour, minute, second)
        date = datetime.date(year, month, day)
        name = match.group(2)
        elapsed_time = float(match.group(3))
        description = match.group(4)

        if not name in benchmarks:
            benchmarks[name] = [[[date], [elapsed_time], description]]
        else:
            benchmarks[name][0][0].append(date)
            benchmarks[name][0][1].append(elapsed_time)
            benchmarks[name][0][2] = description # take later description

# Open and read in logs/milestones.log
milestones = []
milestoneslog = "logs/milestones.log"
if os.path.isfile(milestoneslog):
    lines = open(milestoneslog, 'r').readlines()
    for line in lines:
        date = datetime.datetime.strptime(line.split()[0], "%Y-%m-%d")
        progname = ' '.join(line.split()[1:])
        milestones.append([date, progname])

# Get Matplotlib line markers for use later
markers = []
for m in plt.Line2D.markers:
    try:
        if len(m) == 1 and m != ' ':
            markers.append(m)
    except TypeError:
        pass

year = datetime.timedelta(days=365)
month = datetime.timedelta(days=30)
week = datetime.timedelta(days=7)
today = datetime.date.today()
lasts = ['week', 'month', 'year', 'five years']
locators = [mdates.DayLocator(), mdates.DayLocator(interval=2),
            mdates.MonthLocator(), mdates.YearLocator()]
date_fmts = ['%Y-%m-%d', '%d %b', '%b %Y', '%Y']
xmins = [today - week, today - month, today - year, today - 5*year]

outfile.write("<h2>All benchmarks</h2><p>\n")
outfile.write("<center>\n")
outfile.write("<table border=\"0\">\n")

def get_maxtime(dates, min_date, max_date, run_timings):
    """Return the maximum time between min_date and max_date"""
    max_time = 0
    for i, date in enumerate(dates):
        if date < min_date:
            continue
        elif date > max_date:
            break
        else:
            if max_time < run_timings[i]:
                max_time = run_timings[i]
    return max_time

# Create normalized plots with all benchmarks in same plot for
# last week, last month, last year, and last five years
linetypes = {}
print("Generating plots for all benchmarks...")
for last, locator, date_fmt, xmin in zip(lasts, locators, date_fmts, xmins):
    fig = plt.figure()
    ax = fig.gca()
    num = 0
    ymax = 0
    for benchmark, values in benchmarks.items():
        num += 1
        dates = values[0][0]
        run_timings = values[0][1]/numpy.linalg.norm(values[0][1])
        p = ax.plot(dates, run_timings,
                    marker=markers[num % len(markers)], markersize=3,
                    label=benchmark)
        ax.hold(True)
        linetypes[benchmark] = p[0]
        maxtime = get_maxtime(dates, xmin, today, run_timings)
        if maxtime > ymax:
            ymax = maxtime
    ax.xaxis.set_major_locator(locator)
    ax.xaxis.set_major_formatter(mdates.DateFormatter(date_fmt))
    ax.set_xlim(xmin, today)
    ax.set_ylim(0, ymax)

    # Add milestones to plot
    for milestone in milestones:
        milestone_num = mdates.date2num(milestone[0])
        ax.annotate(milestone[1], xy=(milestone_num, 0.1E-10),
                    xycoords='data', xytext=(0, 30),
                    textcoords='offset points',
                    horizontalalignment='center',
                    verticalalignment='bottom',
                    style='italic', fontsize=6,
                    alpha=0.7, rotation='vertical',
                    arrowprops=dict(arrowstyle="->", alpha=0.3)
                    )

    #lgd = plt.legend(loc='best')
    fig.autofmt_xdate()
    plt.title("All benchmarks (last %s)" % last)
    filename = "all_last_%s.png" % last.replace(' ', '_')
    plt.savefig(filename, facecolor='#eeeeee')

    # Add plots to web page
    if last in ['week', 'year']:
        outfile.write("  <tr><td><img src=\"%s\" /></td>\n" % filename)
    else:
        outfile.write("  <td><img src=\"%s\" /></td></tr>\n" % filename)

# Separate legend
linetypes = sorted(linetypes.items())
handles = [p for (t, p) in linetypes]
labels = [t for (t, p) in linetypes]
plt.figure(figsize=(12, 4)) # twice wide the default
plt.figlegend(handles, labels, 'center', ncol=3)
plt.savefig('all_legend.png')
outfile.write("  <tr><td colspan=\"2\"><img src=\"%s\" /></td></tr>\n" % 'all_legend.png')

outfile.write("</table>\n")
outfile.write("</center>\n")

# Put together subtasks benchmarks which should be plotted together
# (annotated by ((...)) in description)
for benchmark, values in benchmarks.items():
    postfix = values[0][2].split("((")
    if len(postfix) == 1:
        continue
    assert len(postfix) == 2
    postfix = postfix[1].strip().replace("))", "")
    benchmarks.pop(benchmark)
    name = "-".join(benchmark.split("-")[:3]) + "-subtasks"
    if not name in benchmarks:
        benchmarks[name] = []
    benchmarks[name].append((values[0][0], values[0][1], postfix))

# Now create separate plots for every benchmark
for benchmark, values in sorted(benchmarks.items()):
    print("Generating plots for %s..." % benchmark)

    outfile.write("<h2>%s</h2><p>\n" % benchmark)
    outfile.write("<center>\n")
    outfile.write("<table border=\"0\">\n")

    # Create plots for last week, last month, last year, and last five years
    for last, locator, date_fmt, xmin in zip(lasts, locators, date_fmts, xmins):
        fig = plt.figure()
        ax = fig.gca()
        if any(s in benchmark for s in ["fem-speedup-cpp-"]):
            ax.set_ylabel("speedup")
        else:
            ax.set_ylabel("time (seconds)")
        maxtime = 0.0
        for v in values:
            dates = v[0]
            run_timings = v[1]
            description = textwrap.fill(v[2], width=30)
            maxtime = max(maxtime, get_maxtime(dates, xmin, today, run_timings))
            ax.set_ylim(0, maxtime + maxtime/2)
            ax.plot(dates, run_timings, marker='o', markersize=3, label=description)
        ax.legend(loc='best')
        ax.xaxis.set_major_locator(locator)
        ax.xaxis.set_major_formatter(mdates.DateFormatter(date_fmt))
        ax.set_xlim(xmin, today)

        # Add milestones to plot
        for milestone in milestones:
            milestone_num = mdates.date2num(milestone[0])
            ax.annotate(milestone[1], xy=(milestone_num, 0.1E-10),
                        xycoords='data', xytext=(0, 30),
                        textcoords='offset points',
                        horizontalalignment='center',
                        verticalalignment='bottom',
                        style='italic', fontsize=6,
                        alpha=0.7, rotation='vertical',
                        arrowprops=dict(arrowstyle="->", alpha=0.3)
                        )

        fig.autofmt_xdate()
        plt.title("%s (last %s)" % (benchmark, last))
        filename = "%s_last_%s.png" % (benchmark, last.replace(' ', '_'))
        plt.savefig(filename, facecolor='#eeeeee')

        # Add plots to web page
        if last in ['week', 'year']:
            outfile.write("  <tr><td><img src=\"%s\" /></td>\n" % filename)
        else:
            outfile.write("  <td><img src=\"%s\" /></td></tr>\n" % filename)

    outfile.write("</table>\n")
    outfile.write("</center>\n")