1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
"""This demo program solves the incompressible Navier-Stokes equations
on an L-shaped domain using Chorin's splitting method."""
# Copyright (C) 2010-2011 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Mikael Mortensen 2011
#
# First added: 2010-08-30
# Last changed: 2011-06-30
# Begin demo
import matplotlib.pyplot as plt
from dolfin import *
# Print log messages only from the root process in parallel
parameters["std_out_all_processes"] = False;
# Load mesh from file
mesh = Mesh("../lshape.xml.gz")
# Define function spaces (P2-P1)
V = VectorFunctionSpace(mesh, "Lagrange", 2)
Q = FunctionSpace(mesh, "Lagrange", 1)
# Define trial and test functions
u = TrialFunction(V)
p = TrialFunction(Q)
v = TestFunction(V)
q = TestFunction(Q)
# Set parameter values
dt = 0.01
T = 3
nu = 0.01
# Define time-dependent pressure boundary condition
p_in = Expression("sin(3.0*t)", t=0.0, degree=2)
# Define boundary conditions
noslip = DirichletBC(V, (0, 0),
"on_boundary && \
(x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \
(x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))")
inflow = DirichletBC(Q, p_in, "x[1] > 1.0 - DOLFIN_EPS")
outflow = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS")
bcu = [noslip]
bcp = [inflow, outflow]
# Create functions
u0 = Function(V)
u1 = Function(V)
p1 = Function(Q)
# Define coefficients
k = Constant(dt)
f = Constant((0, 0))
# Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \
nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)
# Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(u1)*q*dx
# Velocity update
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx
# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)
# Use amg preconditioner if available
prec = "amg" if has_krylov_solver_preconditioner("amg") else "default"
# Use nonzero guesses - essential for CG with non-symmetric BC
parameters['krylov_solver']['nonzero_initial_guess'] = True
# Create files for storing solution
ufile = File("results/velocity.pvd")
pfile = File("results/pressure.pvd")
# Time-stepping
t = dt
while t < T + DOLFIN_EPS:
# Update pressure boundary condition
p_in.t = t
# Compute tentative velocity step
b1 = assemble(L1)
[bc.apply(A1, b1) for bc in bcu]
solve(A1, u1.vector(), b1, "bicgstab", "default")
# Pressure correction
b2 = assemble(L2)
[bc.apply(A2, b2) for bc in bcp]
[bc.apply(p1.vector()) for bc in bcp]
solve(A2, p1.vector(), b2, "bicgstab", prec)
# Velocity correction
b3 = assemble(L3)
[bc.apply(A3, b3) for bc in bcu]
solve(A3, u1.vector(), b3, "bicgstab", "default")
# Save to file
ufile << u1
pfile << p1
# Move to next time step
u0.assign(u1)
t += dt
# Plot solution
plt.figure()
plot(p1, title="Pressure")
plt.figure()
plot(u1, title="Velocity")
plt.show()
|