1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
.. Documentation for the incompressible Navier-Stokes demo from DOLFIN.
.. _demo_pde_navier_stokes_python_documentation:
Incompressible Navier-Stokes equations
======================================
This demo is implemented in a single Python file,
:download:`demo_navier-stokes.py`, which contains both the variational
forms and the solver.
.. include:: ../common.txt
Implementation
--------------
This demo is implemented in the :download:`demo_navier-stokes.py` file.
First, the :py:mod:`dolfin` module is imported:
.. code-block:: python
from dolfin import *
For the parallel case, we turn off log messages from processes other than
the the root process to avoid excessive output:
.. code-block:: python
# Print log messages only from the root process in parallel
parameters["std_out_all_processes"] = False;
We then load the mesh for the L-shaped domain from file:
.. code-block:: python
# Load mesh from file
mesh = Mesh("../lshape.xml.gz")
We next define a pair of function spaces :math:`V` and :math:`Q` for
the velocity and pressure, and trial and test functions on these
spaces:
.. code-block:: python
# Define function spaces (P2-P1)
V = VectorFunctionSpace(mesh, "Lagrange", 2)
Q = FunctionSpace(mesh, "Lagrange", 1)
# Define trial and test functions
u = TrialFunction(V)
p = TrialFunction(Q)
v = TestFunction(V)
q = TestFunction(Q)
The time step, the length of the time interval, and the kinematic
viscosity are defined by:
.. code-block:: python
# Set parameter values
dt = 0.01
T = 3
nu = 0.01
The time-dependent pressure boundary condition can be defined using
the :py:class:`Expression <dolfin.functions.expression.Expression>`
class:
.. code-block:: python
# Define time-dependent pressure boundary condition
p_in = Expression("sin(3.0*t)", t=0.0, degree=2)
Note that the variable ``t`` is not automatically updated during
time-stepping, so we must remember to manually update the value of the
current time in each time step.
We may now define the boundary conditions for the velocity and
pressure. We define one no-slip boundary condition for the velocity
and a pair of boundary conditions for the pressure at the inflow and
outflow boundaries:
.. code-block:: python
# Define boundary conditions
noslip = DirichletBC(V, (0, 0),
"on_boundary && \
(x[0] < DOLFIN_EPS | x[1] < DOLFIN_EPS | \
(x[0] > 0.5 - DOLFIN_EPS && x[1] > 0.5 - DOLFIN_EPS))")
inflow = DirichletBC(Q, p_in, "x[1] > 1.0 - DOLFIN_EPS")
outflow = DirichletBC(Q, 0, "x[0] > 1.0 - DOLFIN_EPS")
bcu = [noslip]
bcp = [inflow, outflow]
We collect the boundary conditions in the two lists ``bcu`` and
``bcp`` so that we may easily iterate over them below when we apply
the boundary conditions. This makes it easy to add new boundary
conditions or use this demo program to solve the Navier-Stokes
equations on other geometries.
We next define the functions and the coefficients that will be used
below:
.. code-block:: python
# Create functions
u0 = Function(V)
u1 = Function(V)
p1 = Function(Q)
# Define coefficients
k = Constant(dt)
f = Constant((0, 0))
Note that one may use the time step ``dt`` directly in the
form. However, by using the :py:class:`Constant
<dolfin.functions.constant.Constant>` class, we may freely change the
size of the time step without triggering regeneration of code.
The next step is now to define the variational problems for the three
steps of Chorin's method. We do this by defining a pair of bilinear
and linear forms for each step:
.. code-block:: python
# Tentative velocity step
F1 = (1/k)*inner(u - u0, v)*dx + inner(grad(u0)*u0, v)*dx + \
nu*inner(grad(u), grad(v))*dx - inner(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)
# Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1/k)*div(u1)*q*dx
# Velocity update
a3 = inner(u, v)*dx
L3 = inner(u1, v)*dx - k*inner(grad(p1), v)*dx
Since the bilinear forms do not depend on any coefficients that change
during time-stepping, the corresponding matrices remain constant. We
may therefore assemble these before the time-stepping begins:
.. code-block:: python
# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)
# Use amg preconditioner if available
prec = "amg" if has_krylov_solver_preconditioner("amg") else "default"
During time-stepping, we will store the solution in VTK format
(readable by MayaVi and Paraview). We therefore create a pair of files
that can be used to store the solution. Specifying the ``.pvd`` suffix
signals that the solution should be stored in VTK format:
.. code-block:: python
# Create files for storing solution
ufile = File("results/velocity.pvd")
pfile = File("results/pressure.pvd")
The time-stepping loop is now implemented as follows:
.. code-block:: python
# Time-stepping
t = dt
while t < T + DOLFIN_EPS:
# Update pressure boundary condition
p_in.t = t
We remember to update the current time for the time-dependent pressure
boundary value.
For each of the three steps of Chorin's method, we assemble the
right-hand side, apply boundary conditions and solve a linear
system. Note the different use of preconditioners. Incomplete LU
factorization is used for the computation of the tentative velocity
and the velocity update, while algebraic multigrid is used for the
pressure equation if available:
.. code-block:: python
# Compute tentative velocity step
begin("Computing tentative velocity")
b1 = assemble(L1)
[bc.apply(A1, b1) for bc in bcu]
solve(A1, u1.vector(), b1, "bicgstab", "default")
end()
# Pressure correction
begin("Computing pressure correction")
b2 = assemble(L2)
[bc.apply(A2, b2) for bc in bcp]
[bc.apply(p1.vector()) for bc in bcp]
solve(A2, p1.vector(), b2, "bicgstab", prec)
end()
# Velocity correction
begin("Computing velocity correction")
b3 = assemble(L3)
[bc.apply(A3, b3) for bc in bcu]
solve(A3, u1.vector(), b3, "bicgstab", "default")
end()
Note the use of ``begin`` and ``end``; these improve the readability
of the output from the program by adding indentation to diagnostic
messages.
At the end of the time-stepping loop, we plot the solution, store the
solution to file, and update values for the next time step:
.. code-block:: python
# Plot solution
plot(p1, title="Pressure", rescale=True)
plot(u1, title="Velocity", rescale=True)
# Save to file
ufile << u1
pfile << p1
# Move to next time step
u0.assign(u1)
t += dt
Finally, we call the ``interactive`` function to signal that the plot
window should be kept open and allow us to interact with (zoom,
rotate) the solution.
Complete code
-------------
.. literalinclude:: demo_navier-stokes.py
:start-after: # Begin demo
|