1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
"""Unit tests for the fem interface"""
# Copyright (C) 2009 Garth N. Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 2009-07-28
# Last changed: 2009-07-28
import pytest
import numpy
from dolfin import *
from dolfin_utils.test import fixture
xfail = pytest.mark.xfail(strict=True)
@pytest.mark.parametrize('mesh_factory', [(UnitSquareMesh, (4, 4)),
(UnitCubeMesh, (2, 2, 2)),
(UnitSquareMesh.create, (4, 4, CellType.Type.quadrilateral)),
# cell_normal has not been implemented for hex cell
# cell.orientation() does not work
pytest.param(((UnitCubeMesh.create, (2, 2, 2, CellType.Type.hexahedron))), marks=xfail)])
def test_evaluate_dofs(mesh_factory):
func, args = mesh_factory
mesh = func(*args)
v = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
q = VectorElement("Lagrange", mesh.ufl_cell(), 1)
w = v*q
V = FunctionSpace(mesh, v)
W = FunctionSpace(mesh, w)
sdim = V.element().space_dimension()
gdim = V.element().geometric_dimension()
e = Expression("x[0] + x[1]", degree=1)
e2 = Expression(["x[0] + x[1]"]*gdim, degree=1)
coords = numpy.zeros((sdim, gdim), dtype="d")
coord = numpy.zeros(gdim, dtype="d")
values0 = numpy.zeros(sdim, dtype="d")
values1 = numpy.zeros(sdim, dtype="d")
values2 = numpy.zeros(sdim, dtype="d")
values3 = numpy.zeros(sdim, dtype="d")
values4 = numpy.zeros(gdim*sdim, dtype="d")
L0 = W.sub(0)
L1 = W.sub(1)
L01 = L1.sub(0)
L11 = L1.sub(1)
for cell in cells(mesh):
vx = cell.get_vertex_coordinates()
orientation = cell.orientation()
coords = V.element().tabulate_dof_coordinates(cell)
for i in range(coords.shape[0]):
coord[:] = coords[i, :]
values0[i] = e(*coord)
values1 = L0.element().evaluate_dofs(e, vx, orientation, cell)
values2 = L01.element().evaluate_dofs(e, vx, orientation, cell)
values3 = L11.element().evaluate_dofs(e, vx, orientation, cell)
values4 = L1.element().evaluate_dofs(e2, vx, orientation, cell)
for i in range(sdim):
assert round(values0[i] - values1[i], 7) == 0
assert round(values0[i] - values2[i], 7) == 0
assert round(values0[i] - values3[i], 7) == 0
assert round(values4[:sdim][i] - values0[i], 7) == 0
if gdim == 3:
assert round(values4[sdim:sdim*2][i] - values0[i], 7) == 0
assert round(values4[sdim*2:][i] - values0[i], 7) == 0
else:
assert round(values4[sdim:][i] - values0[i], 7) == 0
def test_evaluate_dofs_manifolds_affine():
"Testing evaluate_dofs vs tabulated coordinates."
n = 4
mesh = BoundaryMesh(UnitSquareMesh(n, n), "exterior")
mesh2 = BoundaryMesh(UnitCubeMesh(n, n, n), "exterior")
DG0 = FunctionSpace(mesh, "DG", 0)
DG1 = FunctionSpace(mesh, "DG", 1)
CG1 = FunctionSpace(mesh, "CG", 1)
CG2 = FunctionSpace(mesh, "CG", 2)
DG20 = FunctionSpace(mesh2, "DG", 0)
DG21 = FunctionSpace(mesh2, "DG", 1)
CG21 = FunctionSpace(mesh2, "CG", 1)
CG22 = FunctionSpace(mesh2, "CG", 2)
elements = [DG0, DG1, CG1, CG2, DG20, DG21, CG21, CG22]
f = Expression("x[0] + x[1]", degree=1)
for V in elements:
sdim = V.element().space_dimension()
gdim = V.mesh().geometry().dim()
coord = numpy.zeros(gdim, dtype="d")
values0 = numpy.zeros(sdim, dtype="d")
values1 = numpy.zeros(sdim, dtype="d")
for cell in cells(V.mesh()):
vx = cell.get_vertex_coordinates()
orientation = cell.orientation()
coords = V.element().tabulate_dof_coordinates(cell)
for i in range(coords.shape[0]):
coord[:] = coords[i, :]
values0[i] = f(*coord)
values1 = V.element().evaluate_dofs(f, vx, orientation, cell)
for i in range(sdim):
assert round(values0[i] - values1[i], 7) == 0
@pytest.mark.parametrize('mesh_factory', [(UnitSquareMesh, (4, 4)),
(UnitCubeMesh, (2, 2, 2)),
(UnitSquareMesh.create, (4, 4, CellType.Type.quadrilateral)),
(UnitCubeMesh.create, (2, 2, 2, CellType.Type.hexahedron))])
def test_tabulate_coord(mesh_factory):
func, args = mesh_factory
mesh = func(*args)
v = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
q = VectorElement("Lagrange", mesh.ufl_cell(), 1)
w = v*q
V = FunctionSpace(mesh, v)
W = FunctionSpace(mesh, w)
sdim = V.element().space_dimension()
gdim = V.element().geometric_dimension()
coord0 = numpy.zeros((sdim, gdim), dtype="d")
coord1 = numpy.zeros((sdim, gdim), dtype="d")
coord2 = numpy.zeros((sdim, gdim), dtype="d")
coord3 = numpy.zeros((sdim, gdim), dtype="d")
coord4 = numpy.zeros((gdim*sdim, gdim), dtype="d")
L0 = W.sub(0)
L1 = W.sub(1)
L01 = L1.sub(0)
L11 = L1.sub(1)
for cell in cells(mesh):
coord0 = V.element().tabulate_dof_coordinates(cell)
coord1 = L0.element().tabulate_dof_coordinates(cell)
coord2 = L01.element().tabulate_dof_coordinates(cell)
coord3 = L11.element().tabulate_dof_coordinates(cell)
coord4 = L1.element().tabulate_dof_coordinates(cell)
assert (coord0 == coord1).all()
assert (coord0 == coord2).all()
assert (coord0 == coord3).all()
if gdim == 3:
assert (coord4[sdim:sdim*2] == coord0).all()
assert (coord4[sdim*2:] == coord0).all()
else:
assert (coord4[sdim:] == coord0).all()
|