File: test_mixedassembler.py

package info (click to toggle)
dolfin 2019.2.0~legacy20240219.1c52e83-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 31,700 kB
  • sloc: xml: 104,040; cpp: 102,227; python: 24,356; sh: 460; makefile: 330; javascript: 226
file content (551 lines) | stat: -rw-r--r-- 18,136 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
#!/usr/bin/env py.test

"""Unit tests for MixedAssembler"""

# Copyright (C) 2011 Johan Hake
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Cecile Daversin-Catty 2018

import pytest
import numpy as np
from dolfin import *
from ufl_legacy.log import UFLException

from dolfin_utils.test import skip_in_parallel, fixture


@fixture
def one_element():  # Reference element
    mesh = UnitSquareMesh(1, 1, "left")
    cell_f = MeshFunction('size_t', mesh, mesh.topology().dim(), 0)
    cell_f[0] = 1
    mesh = SubMesh(mesh, cell_f, 1)

    marker = MeshFunction('size_t', mesh, mesh.topology().dim()-1, 0)
    for f in facets(mesh):
        marker[f] = 0.0 - DOLFIN_EPS < f.midpoint().x() < 0.0 + DOLFIN_EPS

    return (mesh, marker)


@fixture
def two_elements():
    mesh = UnitSquareMesh(1, 1, "left")

    marker = MeshFunction('size_t', mesh, mesh.topology().dim()-1, 0)
    for f in facets(mesh):
        marker[f] = 0.5 - DOLFIN_EPS < f.midpoint().x() < 0.5 + DOLFIN_EPS and 0.5 - \
            DOLFIN_EPS < f.midpoint().y() < 0.5 + DOLFIN_EPS

    return (mesh, marker)


@fixture
def unitsquare_3x3():
    mesh = UnitSquareMesh(3, 3)

    marker = MeshFunction('size_t', mesh, mesh.topology().dim()-1, 0)
    for f in facets(mesh):
        marker[f] = 0.5 - DOLFIN_EPS < f.midpoint().x() < 0.5 + DOLFIN_EPS and 0.5 - \
            DOLFIN_EPS < f.midpoint().y() < 0.5 + DOLFIN_EPS

    return (mesh, marker)


@fixture
def two_elements_with_interface():
    mesh = UnitSquareMesh(1, 1)

    markerc = MeshFunction('size_t', mesh, mesh.topology().dim(), 0)
    markerf = MeshFunction('size_t', mesh, mesh.topology().dim()-1, 0)
    for c in cells(mesh):
        markerc[c] = c.midpoint().y() > c.midpoint().x()
    for f in facets(mesh):
        markerf[f] = abs(f.midpoint().x() - f.midpoint().y()) < 1e-10

    return (markerc, markerf)


@fixture
def unit_marker_2D2D():
    n = 20
    square = UnitSquareMesh(n, n)
    marker = MeshFunction("size_t", square, square.topology().dim(), 0)
    for c in cells(square):
        marker[c] = c.midpoint().x() < 0.5
    return marker


@fixture
def unit_marker_3D2D():
    n = 20
    cube = UnitCubeMesh(n, n, n)
    marker = MeshFunction("size_t", cube, cube.topology().dim() - 1, 0)
    for f in facets(cube):
        marker[f] = 0.5 - DOLFIN_EPS < f.midpoint().z() < 0.5 + DOLFIN_EPS
    return marker


@fixture
def unit_marker_ext():
    square = UnitSquareMesh(1, 1)
    marker = MeshFunction("size_t", square, square.topology().dim()-1, 0)
    for f in facets(square):
        marker[f] = abs(f.midpoint().y()) < 1e-10
    return marker


def meshview(marker, i):
    return MeshView.create(marker, i)


def space(mesh):
    return FunctionSpace(mesh, "Lagrange", 1)


def a(u, v):
    return inner(grad(u), grad(v))*dx


def L(f, v):
    return f*v*dx


def boundary(x):
    return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS


def boundary1(x):
    return x[0] > 1.0 - DOLFIN_EPS


def boundary2(x):
    return x[0] < DOLFIN_EPS


def params():
    return dict({"linear_solver": "direct"})


@skip_in_parallel
def test_mixed_assembly(one_element, two_elements):
    """Off-diagonal blocks assembly"""

    # Test for a range of various FE types
    def _check_scalar(case, order):
        mesh = case[0]
        submesh = MeshView.create(case[1], 1)

        V = FunctionSpace(mesh, 'CG', order[0])
        Q = FunctionSpace(submesh, 'CG', order[1])
        W = MixedFunctionSpace(V, Q)

        f = Expression('x[0]+x[1]', degree=3)
        g = Expression('x[0]-x[1]', degree=3)

        (u, p) = TrialFunctions(W)
        (v, q) = TestFunctions(W)

        dx_ = Measure('dx', domain=W.sub_space(1).mesh())
        # Reference value
        ref = assemble(inner(f, g)*dx_)

        trace_form = inner(u, q)*dx_ + inner(u, v)*dx + \
            inner(p, v)*dx_ + inner(p, q)*dx_
        rhs = inner(Constant(0), v)*dx + inner(Constant(0), q)*dx_

        AA, bb, _ = assemble_mixed_system(trace_form == rhs, Function(W))

        T = AA[2]
        Tt = AA[1]

        v = interpolate(f, V)
        q = interpolate(g, Q)

        Tv = Function(Q).vector()
        T.mult(v.vector(), Tv)
        qT = Function(V).vector()
        Tt.mult(q.vector(), qT)

        vqT = v.vector().inner(qT)
        qTv = q.vector().inner(Tv)

        assert (abs(vqT - ref) <= 1e-12)
        assert (abs(qTv - ref) <= 1e-12)
        assert (abs(qTv - vqT) <= 1e-12)

    def _check_vectorial(case, order):
        mesh = case[0]
        submesh = MeshView.create(case[1], 1)

        V = VectorFunctionSpace(mesh, 'CG', order[0])
        Q = VectorFunctionSpace(submesh, 'CG', order[1])
        W = MixedFunctionSpace(V, Q)

        f = Expression(('x[0]+x[1]', 'x[0]-x[1]'), degree=3)
        g = Expression(('x[0]+3*x[1]', 'x[0]-2*x[1]'), degree=3)

        (u, p) = TrialFunctions(W)
        (v, q) = TestFunctions(W)
        dx_ = Measure('dx', domain=W.sub_space(1).mesh())
        # Reference value
        ref = assemble(inner(f, g)*dx_)

        trace_form = inner(u, q)*dx_ + inner(u, v)*dx + \
            inner(p, v)*dx_ + inner(p, q)*dx_
        rhs = inner(Constant((0, 0)), v)*dx + inner(Constant((0, 0)), q)*dx_

        AA, bb, _ = assemble_mixed_system(trace_form == rhs, Function(W))

        T = AA[2]
        Tt = AA[1]

        v = interpolate(f, V)
        q = interpolate(g, Q)

        Tv = Function(Q).vector()
        T.mult(v.vector(), Tv)
        qT = Function(V).vector()
        Tt.mult(q.vector(), qT)

        vqT = v.vector().inner(qT)
        qTv = q.vector().inner(Tv)

        assert (abs(vqT - ref) <= 1e-12)
        assert (abs(qTv - ref) <= 1e-12)
        assert (abs(qTv - vqT) <= 1e-12)

    # Scalar case - One element + Lagrange mult on exterior boundary
    _check_scalar(one_element, (1, 2))  # CG1 - CG2
    _check_scalar(one_element, (2, 1))  # CG2 - CG1
    # Scalar case - Two elements + Lagrange mult on interior facet
    _check_scalar(two_elements, (1, 2))  # CG1 - CG2
    _check_scalar(two_elements, (2, 1))  # CG2 - CG1
    # Vectorial case - One element + Lagrange mult on exterior boundary
    _check_vectorial(one_element, (1, 2))  # CG1 - CG2
    _check_vectorial(one_element, (2, 1))  # CG2 - CG1
    # Vectorial case - Two elements + Lagrange mult on interior facet
    _check_vectorial(two_elements, (1, 2))  # CG1 - CG2
    _check_vectorial(two_elements, (2, 1))  # CG2 - CG1


@skip_in_parallel
def test_mixed_assembly_interface(two_elements_with_interface):
    """Off-diagonal blocks assembly"""

    # Test for a range of various FE types
    def _check_scalar(case, order):
        mesh0 = MeshView.create(case[0], 0)
        mesh1 = MeshView.create(case[0], 1)
        submesh = MeshView.create(case[1], 1)

        V0 = FunctionSpace(mesh0, 'CG', order[0])
        V1 = FunctionSpace(mesh1, 'CG', order[1])
        Q = FunctionSpace(submesh, 'CG', order[2])
        W = MixedFunctionSpace(V0, V1, Q)

        f = Expression('x[0]+x[1]', degree=3)
        g = Expression('x[0]-x[1]', degree=3)

        (u0, u1, p) = TrialFunctions(W)
        (v0, v1, q) = TestFunctions(W)

        dx_ = Measure('dx', domain=W.sub_space(2).mesh())
        # Reference value
        ref_fg = assemble(inner(f, g)*dx_)
        ref_ff = assemble(inner(f, f)*dx_)

        # Diagonal blocks
        trace_form = inner(u0, v0)*dx + inner(u1, v1)*dx + inner(p, q)*dx_
        # Mixed-dimensional coupling
        trace_form += inner(u0, q)*dx_ + inner(u1, q)*dx_ + \
            inner(p, v0)*dx_ + inner(p, v1)*dx_
        # Integration of common
        trace_form += inner(u0, v1)*dx_ + inner(u1, v0)*dx_
        rhs = inner(Constant(0), v0)*dx + inner(Constant(0), v1) * \
            dx + inner(Constant(0), q)*dx_

        AA, bb, _ = assemble_mixed_system(trace_form == rhs, Function(W))

        # Mixed-dimensional coupling
        T0 = AA[6]  # u0*q
        T1 = AA[7]  # u1*q
        Tt0 = AA[2]  # p*v0
        Tt1 = AA[5]  # p*v1
        # Integration of common interface
        I = AA[3]  # u0*v1
        It = AA[1]  # u1*v0

        v0 = interpolate(f, W.sub_space(0))
        v1 = interpolate(f, W.sub_space(1))
        q = interpolate(g, W.sub_space(2))

        Tv0 = Function(Q).vector()
        Tv1 = Function(Q).vector()
        T0.mult(v0.vector(), Tv0)
        T1.mult(v1.vector(), Tv1)
        qT0 = Function(V0).vector()
        qT1 = Function(V1).vector()
        Tt0.mult(q.vector(), qT0)
        Tt1.mult(q.vector(), qT1)

        Iv0 = Function(V1).vector()
        Iv1 = Function(V0).vector()
        I.mult(v0.vector(), Iv0)
        It.mult(v1.vector(), Iv1)

        v0qT0 = v0.vector().inner(qT0)
        v1qT1 = v1.vector().inner(qT1)
        qTv0 = q.vector().inner(Tv0)
        qTv1 = q.vector().inner(Tv1)

        v1Iv0 = v1.vector().inner(Iv0)
        v0Iv1 = v0.vector().inner(Iv1)

        assert (abs(v0qT0 - ref_fg) <= 1e-12)
        assert (abs(v1qT1 - ref_fg) <= 1e-12)
        assert (abs(qTv0 - ref_fg) <= 1e-12)
        assert (abs(qTv1 - ref_fg) <= 1e-12)
        assert (abs(qTv0 - v0qT0) <= 1e-12)
        assert (abs(qTv1 - v1qT1) <= 1e-12)

        assert (abs(v1Iv0 - ref_ff) <= 1e-12)
        assert (abs(v0Iv1 - ref_ff) <= 1e-12)

        # print("[scalar] v1Iv0 = ", v1Iv0, " while ref_ff = ", ref_ff)
        # print("[scalar] v0Iv1 = ", v0Iv1, " while ref_ff = ", ref_ff)

    def _check_vectorial(case, order):
        mesh0 = MeshView.create(case[0], 0)
        mesh1 = MeshView.create(case[0], 1)
        submesh = MeshView.create(case[1], 1)

        V0 = VectorFunctionSpace(mesh0, 'CG', order[0])
        V1 = VectorFunctionSpace(mesh1, 'CG', order[1])
        Q = VectorFunctionSpace(submesh, 'CG', order[2])
        W = MixedFunctionSpace(V0, V1, Q)

        f = Expression(('x[0]+x[1]', 'x[0]-x[1]'), degree=3)
        g = Expression(('x[0]+3*x[1]', 'x[0]-2*x[1]'), degree=3)

        (u0, u1, p) = TrialFunctions(W)
        (v0, v1, q) = TestFunctions(W)
        dx_ = Measure('dx', domain=W.sub_space(2).mesh())
        # Reference value
        ref_fg = assemble(inner(f, g)*dx_)
        ref_ff = assemble(inner(f, f)*dx_)

        # Diagonal blocks
        trace_form = inner(u0, v0)*dx + inner(u1, v1)*dx + inner(p, q)*dx_
        # Mixed-dimensional coupling
        trace_form += inner(u0, q)*dx_ + inner(u1, q)*dx_ + \
            inner(p, v0)*dx_ + inner(p, v1)*dx_
        # Integration of common interface
        trace_form += inner(u0, v1)*dx_ + inner(u1, v0)*dx_
        rhs = inner(Constant((0, 0)), v0)*dx + inner(Constant((0, 0)),
                                                     v1)*dx + inner(Constant((0, 0)), q)*dx_

        AA, bb, _ = assemble_mixed_system(trace_form == rhs, Function(W))

        # Mixed-dimensional coupling
        T0 = AA[6]
        T1 = AA[7]
        Tt0 = AA[2]
        Tt1 = AA[5]
        # Integration of common interface
        I = AA[3]  # u0*v1
        It = AA[1]  # u1*v0

        v0 = interpolate(f, W.sub_space(0))
        v1 = interpolate(f, W.sub_space(1))
        q = interpolate(g, W.sub_space(2))

        Tv0 = Function(Q).vector()
        Tv1 = Function(Q).vector()
        T0.mult(v0.vector(), Tv0)
        T1.mult(v1.vector(), Tv1)
        qT0 = Function(V0).vector()
        qT1 = Function(V1).vector()
        Tt0.mult(q.vector(), qT0)
        Tt1.mult(q.vector(), qT1)

        Iv0 = Function(V1).vector()
        Iv1 = Function(V0).vector()
        I.mult(v0.vector(), Iv0)
        It.mult(v1.vector(), Iv1)

        v0qT0 = v0.vector().inner(qT0)
        v1qT1 = v1.vector().inner(qT1)
        qTv0 = q.vector().inner(Tv0)
        qTv1 = q.vector().inner(Tv1)

        v1Iv0 = v1.vector().inner(Iv0)
        v0Iv1 = v0.vector().inner(Iv1)

        assert (abs(v0qT0 - ref_fg) <= 1e-12)
        assert (abs(v1qT1 - ref_fg) <= 1e-12)
        assert (abs(qTv0 - ref_fg) <= 1e-12)
        assert (abs(qTv1 - ref_fg) <= 1e-12)
        assert (abs(qTv0 - v0qT0) <= 1e-12)
        assert (abs(qTv1 - v1qT1) <= 1e-12)

        assert (abs(v1Iv0 - ref_ff) <= 1e-12)
        assert (abs(v0Iv1 - ref_ff) <= 1e-12)

        # print("[vectorial] v1Iv0 = ", v1Iv0, " while ref_ff = ", ref_ff)
        # print("[vectorial] v0Iv1 = ", v0Iv1, " while ref_ff = ", ref_ff)

    # Scalar case - Two elements + Lagrange mult on interior facet
    _check_scalar(two_elements_with_interface, (1, 1, 1))  # CG1 - CG1 - CG2
    _check_scalar(two_elements_with_interface, (2, 2, 1))  # CG2 - CG2 - CG1
    _check_scalar(two_elements_with_interface, (1, 1, 2))  # CG1 - CG1- CG2
    _check_scalar(two_elements_with_interface, (2, 2, 2))  # CG2 - CG2- CG1
    _check_scalar(two_elements_with_interface, (1, 1, 2))  # CG2 - CG1- CG1
    _check_scalar(two_elements_with_interface, (1, 2, 1))  # CG1 - CG2- CG2
    _check_scalar(two_elements_with_interface, (2, 1, 1))  # CG1 - CG2- CG2
    # Vectorial case - Two elements + Lagrange mult on interior facet
    _check_vectorial(two_elements_with_interface, (1, 1, 2))  # CG1 - CG1 - CG2
    _check_vectorial(two_elements_with_interface, (2, 2, 1))  # CG2 - CG2 - CG1
    _check_vectorial(two_elements_with_interface, (1, 1, 2))  # CG1 - CG1- CG2
    _check_vectorial(two_elements_with_interface, (2, 2, 1))  # CG2 - CG2- CG1
    _check_vectorial(two_elements_with_interface, (2, 1, 1))  # CG2 - CG1- CG1
    _check_vectorial(two_elements_with_interface, (1, 2, 1))  # CG1 - CG2- CG2


@skip_in_parallel
def test_mixed_assembly_diag(unit_marker_2D2D, unit_marker_3D2D):
    def _compare_solutions(marker, boundaries):
        # Meshes
        _mesh1 = meshview(marker, 0)
        _mesh2 = meshview(marker, 1)
        # Spaces
        _space1 = space(_mesh1)
        _space2 = space(_mesh2)
        _space_mixed = MixedFunctionSpace(_space1, _space2)
        # Trial functions
        _u1 = TrialFunction(_space1)
        _u2 = TrialFunction(_space2)
        (_u1_m, _u2_m) = TrialFunctions(_space_mixed)
        # Test functions
        _v1 = TestFunction(_space1)
        _v2 = TestFunction(_space2)
        (_v1_m, _v2_m) = TestFunctions(_space_mixed)
        # Bilinear forms
        _a1 = a(_u1, _v1)
        _a2 = a(_u2, _v2)
        _am = a(_u1_m, _v1_m) + a(_u2_m, _v2_m)
        # Linear forms
        f = Expression(
            "10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)", degree=2)
        _L1 = L(f, _v1)
        _L2 = L(f, _v2)
        _Lm = L(f, _v1_m) + L(f, _v2_m)
        # Solution
        sol1 = Function(_space1)
        sol2 = Function(_space2)
        sol = Function(_space_mixed)
        # BCs
        bc1 = DirichletBC(_space1, Constant(0.0), boundaries[0])
        bc2 = DirichletBC(_space2, Constant(0.0), boundaries[1])
        # Resolution
        solve(_a1 == _L1, sol1, bcs=bc1)
        solve(_a2 == _L2, sol2, bcs=bc2)
        solve(_am == _Lm, sol, bcs=[bc1, bc2], solver_parameters=params())

        sol1_m = sol.sub(0, deepcopy=True)
        sol2_m = sol.sub(1, deepcopy=True)
        assert len(sol1.vector()) == len(sol1_m.vector())
        for i in range(len(sol1.vector())):
            assert abs(sol1.vector()[i] - sol1_m.vector()[i]) < 1e-10

        assert len(sol2.vector()) == len(sol2_m.vector())
        for i in range(len(sol2.vector())):
            assert abs(sol2.vector()[i] - sol2_m.vector()[i]) < 1e-10

    _compare_solutions(unit_marker_2D2D, [boundary1, boundary2])
    _compare_solutions(unit_marker_3D2D, [boundary, boundary])


@skip_in_parallel
def test_mixed_assembly_rank0(unit_marker_ext):
    def _compare_solutions(marker):
        # Meshes
        mesh = marker.mesh()  # The initial parent mesh
        submesh = meshview(marker, 1)

        Vh0 = FunctionSpace(mesh, "Lagrange", 1)
        Vh1 = FunctionSpace(submesh, "Lagrange", 1)

        v0 = Function(Vh0)
        m0 = Function(Vh0)
        m1 = Function(Vh1)

        v0.vector()[:] = np.random.rand(Vh0.dim())
        m0.vector()[:] = np.ones(Vh0.dim())
        m1.vector()[:] = np.ones(Vh1.dim())

        ds = Measure("ds", domain=mesh, subdomain_data=marker)
        f0 = v0 * m0 * ds(1)

        ds1 = Measure("dx", domain=submesh)
        f1 = v0 * m1 * ds1

        assert abs(assemble(f0) - assemble_mixed(f1)) < 1e-10

    _compare_solutions(unit_marker_ext)


@skip_in_parallel
def test_function_spaces_consistency(one_element, two_elements, unitsquare_3x3):
    def _integrating_subf_over_parent(case, order):
        with pytest.raises(Exception, match="codim"):
            mesh = case[0]
            submesh = MeshView.create(case[1], 1)

            V = FunctionSpace(mesh, 'CG', order[0])
            Q = FunctionSpace(submesh, 'CG', order[1])
            W = MixedFunctionSpace(V, Q)

            (u, _) = TrialFunctions(W)
            (_, q) = TestFunctions(W)

            dx_ = Measure('dx', domain=W.sub_space(0).mesh())

            assemble_mixed(u*q*dx_)

    _integrating_subf_over_parent(one_element, (1, 1))
    _integrating_subf_over_parent(two_elements, (1, 1))
    _integrating_subf_over_parent(unitsquare_3x3, (1, 1))

    def _no_shared_parent(case, order):
        with pytest.raises(RuntimeError, match="Cannot find common parent mesh"):
            mesh = case[0]
            int_mesh = UnitSquareMesh(3, 3)

            V = FunctionSpace(mesh, 'CG', order[0])
            Q = FunctionSpace(int_mesh, 'CG', order[1])
            W = MixedFunctionSpace(V, Q)

            (u, p) = TrialFunctions(W)
            (v, q) = TestFunctions(W)

            dx_ = Measure('dx', domain=int_mesh)

            assemble_mixed(u*v*dx_)

    _no_shared_parent(unitsquare_3x3, (1, 1))