File: test_petsc_transfer_matrix.py

package info (click to toggle)
dolfin 2019.2.0~legacy20240219.1c52e83-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 31,700 kB
  • sloc: xml: 104,040; cpp: 102,227; python: 24,356; sh: 460; makefile: 330; javascript: 226
file content (185 lines) | stat: -rw-r--r-- 5,556 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""Unit tests for the fem interface"""

# Copyright (C) 2016 Chris Richardson
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.

import pytest
import numpy as np
from dolfin import *

from dolfin_utils.test import *

def test_scalar_p1():
    meshc = UnitCubeMesh(2, 2, 2)
    meshf = UnitCubeMesh(3, 4, 5)

    Vc = FunctionSpace(meshc, "CG", 1)
    Vf = FunctionSpace(meshf, "CG", 1)

    u = Expression("x[0] + 2*x[1] + 3*x[2]", degree=1)
    uc = interpolate(u, Vc)
    uf = interpolate(u, Vf)

    mat = PETScDMCollection.create_transfer_matrix(Vc, Vf)
    Vuc = Function(Vf)
    mat.mult(uc.vector(), Vuc.vector())
    as_backend_type(Vuc.vector()).update_ghost_values()

    diff = Function(Vf)
    diff.assign(Vuc - uf)
    assert diff.vector().norm("l2") < 1.0e-12

def test_scalar_p1_scaled_mesh():
    # Make coarse mesh smaller than fine mesh
    meshc = UnitCubeMesh(2, 2, 2)
    for x in meshc.coordinates():
        x *= 0.9
    meshf = UnitCubeMesh(3, 4, 5)

    Vc = FunctionSpace(meshc, "CG", 1)
    Vf = FunctionSpace(meshf, "CG", 1)

    u = Expression("x[0] + 2*x[1] + 3*x[2]", degree=1)
    uc = interpolate(u, Vc)
    uf = interpolate(u, Vf)

    mat = PETScDMCollection.create_transfer_matrix(Vc, Vf)
    Vuc = Function(Vf)
    mat.mult(uc.vector(), Vuc.vector())
    as_backend_type(Vuc.vector()).update_ghost_values()

    diff = Function(Vf)
    diff.assign(Vuc - uf)
    print(diff.vector().norm("l2"))
    assert diff.vector().norm("l2") < 1.0e-12

    # Now make coarse mesh larger than fine mesh
    for x in meshc.coordinates():
        x *= 1.5
    uc = interpolate(u, Vc)

    mat = PETScDMCollection.create_transfer_matrix(Vc, Vf)
    mat.mult(uc.vector(), Vuc.vector())
    as_backend_type(Vuc.vector()).update_ghost_values()

    diff.assign(Vuc - uf)
    assert diff.vector().norm("l2") < 1.0e-12

def test_scalar_p2():
    meshc = UnitCubeMesh(2, 2, 2)
    meshf = UnitCubeMesh(3, 4, 5)

    Vc = FunctionSpace(meshc, "CG", 2)
    Vf = FunctionSpace(meshf, "CG", 2)

    u = Expression("x[0]*x[2] + 2*x[1]*x[0] + 3*x[2]", degree=2)
    uc = interpolate(u, Vc)
    uf = interpolate(u, Vf)

    mat = PETScDMCollection.create_transfer_matrix(Vc, Vf)
    Vuc = Function(Vf)
    mat.mult(uc.vector(), Vuc.vector())
    as_backend_type(Vuc.vector()).update_ghost_values()

    diff = Function(Vf)
    diff.assign(Vuc - uf)
    assert diff.vector().norm("l2") < 1.0e-12

def test_vector_p1_2d():
    meshc = UnitSquareMesh(3, 3)
    meshf = UnitSquareMesh(5, 5)

    Vc = VectorFunctionSpace(meshc, "CG", 1)
    Vf = VectorFunctionSpace(meshf, "CG", 1)

    u = Expression(("x[0] + 2*x[1]", "4*x[0]"), degree=1)
    uc = interpolate(u, Vc)
    uf = interpolate(u, Vf)

    mat = PETScDMCollection.create_transfer_matrix(Vc, Vf)
    Vuc = Function(Vf)
    mat.mult(uc.vector(), Vuc.vector())
    as_backend_type(Vuc.vector()).update_ghost_values()

    diff = Function(Vf)
    diff.assign(Vuc - uf)
    assert diff.vector().norm("l2") < 1.0e-12

def test_vector_p2_2d():
    meshc = UnitSquareMesh(5, 4)
    meshf = UnitSquareMesh(5, 8)

    Vc = VectorFunctionSpace(meshc, "CG", 2)
    Vf = VectorFunctionSpace(meshf, "CG", 2)

    u = Expression(("x[0] + 2*x[1]*x[0]", "4*x[0]*x[1]"), degree=2)
    uc = interpolate(u, Vc)
    uf = interpolate(u, Vf)

    mat = PETScDMCollection.create_transfer_matrix(Vc, Vf)
    Vuc = Function(Vf)
    mat.mult(uc.vector(), Vuc.vector())
    as_backend_type(Vuc.vector()).update_ghost_values()

    diff = Function(Vf)
    diff.assign(Vuc - uf)
    assert diff.vector().norm("l2") < 1.0e-12

def test_vector_p1_3d():
    meshc = UnitCubeMesh(2, 3, 4)
    meshf = UnitCubeMesh(3, 4, 5)

    Vc = VectorFunctionSpace(meshc, "CG", 1)
    Vf = VectorFunctionSpace(meshf, "CG", 1)

    u = Expression(("x[0] + 2*x[1]", "4*x[0]", "3*x[2] + x[0]"), degree=1)
    uc = interpolate(u, Vc)
    uf = interpolate(u, Vf)

    mat = PETScDMCollection.create_transfer_matrix(Vc, Vf)
    Vuc = Function(Vf)
    mat.mult(uc.vector(), Vuc.vector())
    as_backend_type(Vuc.vector()).update_ghost_values()

    diff = Function(Vf)
    diff.assign(Vuc - uf)
    assert diff.vector().norm("l2") < 1.0e-12

def test_taylor_hood_cube():
    pytest.xfail("Problem with Mixed Function Spaces")
    meshc = UnitCubeMesh(2, 2, 2)
    meshf = UnitCubeMesh(3, 4, 5)

    Ve = VectorElement("CG", meshc.ufl_cell(), 2)
    Qe = FiniteElement("CG", meshc.ufl_cell(), 1)
    Ze = MixedElement([Ve, Qe])

    Zc = FunctionSpace(meshc, Ze)
    Zf = FunctionSpace(meshf, Ze)

    z = Expression(("x[0]*x[1]", "x[1]*x[2]", "x[2]*x[0]", "x[0] + 3*x[1] + x[2]"), degree=2)
    zc = interpolate(z, Zc)
    zf = interpolate(z, Zf)

    mat = PETScDMCollection.create_transfer_matrix(Zc, Zf)
    Zuc = Function(Zf)
    mat.mult(zc.vector(), Zuc.vector())
    as_backend_type(Zuc.vector()).update_ghost_values()

    diff = Function(Zf)
    diff.assign(Zuc - zf)
    assert diff.vector().norm("l2") < 1.0e-12