1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
"""Unit tests for the function library"""
# Copyright (C) 2007-2014 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Benjamin Kehlet 2012
import pytest
from dolfin import *
from math import sin, cos, exp, tan
from numpy import array, zeros
import numpy as np
from dolfin_utils.test import fixture, skip_in_parallel
@fixture
def mesh():
return UnitCubeMesh(8, 8, 8)
@fixture
def V(mesh):
return FunctionSpace(mesh, 'CG', 1)
@fixture
def W(mesh):
return VectorFunctionSpace(mesh, 'CG', 1)
def test_arbitrary_eval(mesh):
class F0(UserExpression):
def eval(self, values, x):
values[0] = sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])
f0 = F0(name="f0", label="My expression", degree=2)
f1 = Expression("a*sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])",
degree=2, a=1., name="f1")
x = array([0.31, 0.32, 0.33])
u00 = zeros(1)
u01 = zeros(1)
u10 = zeros(1)
u20 = zeros(1)
# Check usergeneration of name and label
assert f0.name() == "f0"
assert str(f0) == "f0"
assert f0.label() == "My expression"
assert f1.name() == "f1"
assert str(f1) == "f1"
assert f1.label() == "User defined expression"
# Check outgeneration of name
count = int(F0(degree=0).name()[2:])
assert F0(degree=0).count() == count + 1
# Test original and vs short evaluation
f0.eval(u00, x)
f0(x, values=u01)
assert round(u00[0] - u01[0], 7) == 0
# Evaluation with and without return value
f1(x, values=u10)
u11 = f1(x)
assert round(u10[0] - u11, 7) == 0
# Test *args for coordinate argument
f1(0.31, 0.32, 0.33, values=u20)
u21 = f0(0.31, 0.32, 0.33)
assert round(u20[0] - u21, 7) == 0
# Test Point evaluation
p0 = Point(0.31, 0.32, 0.33)
u21 = f1(p0)
assert round(u20[0] - u21, 7) == 0
same_result = sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])
assert round(u00[0] - same_result, 7) == 0
assert round(u11 - same_result, 7) == 0
assert round(u21 - same_result, 7) == 0
# For MUMPS, increase estimated require memory increase. Typically
# required for small meshes in 3D (solver is called by 'project')
if has_petsc():
PETScOptions.set("mat_mumps_icntl_14", 40)
x = (mesh.coordinates()[0]+mesh.coordinates()[1])/2
f2 = Expression("1.0 + 3.0*x[0] + 4.0*x[1] + 0.5*x[2]", degree=2)
V2 = FunctionSpace(mesh, 'CG', 2)
g0 = interpolate(f2, V=V2)
g1 = project(f2, V=V2)
u3 = f2(x)
u4 = g0(x)
u5 = g1(x)
assert round(u3 - u4, 7) == 0
assert round(u3 - u5, 4) == 0
if has_petsc():
PETScOptions.clear("mat_mumps_icntl_14")
def test_ufl_eval():
class F0(UserExpression):
def eval(self, values, x):
values[0] = sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])
class V0(UserExpression):
def eval(self, values, x):
values[0] = x[0]**2
values[1] = x[1]**2
values[2] = x[2]**2
def value_shape(self):
return (3,)
f0 = F0(degree=2)
v0 = V0(degree=2)
x = (2.0, 1.0, 3.0)
# Test ufl evaluation through mapping (overriding the Expression
# with N here):
def N(x):
return x[0]**2 + x[1] + 3*x[2]
assert f0(x, {f0: N}) == 14
a = f0**2
b = a(x, {f0: N})
assert b == 196
# Test ufl evaluation together with Expression evaluation by dolfin
# scalar
assert f0(x) == f0(*x)
assert (f0**2)(x) == f0(*x)**2
# vector
assert all(a == b for a, b in zip(v0(x), v0(*x)))
assert dot(v0, v0)(x) == sum(v**2 for v in v0(*x))
assert dot(v0, v0)(x) == 98
def test_overload_and_call_back(V, mesh):
class F0(UserExpression):
def eval(self, values, x):
values[0] = sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])
class F1(UserExpression):
def __init__(self, mesh, *arg, **kwargs):
super().__init__(*arg, **kwargs)
self.mesh = mesh
def eval_cell(self, values, x, cell):
c = Cell(self.mesh, cell.index)
values[0] = sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])
e0 = F0(degree=2)
e1 = F1(mesh, degree=2)
e2 = Expression("sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])", degree=2)
u0 = interpolate(e0, V)
u1 = interpolate(e1, V)
u2 = interpolate(e2, V)
s0 = norm(u0)
s1 = norm(u1)
s2 = norm(u2)
ref = 0.36557637568519191
assert round(s0 - ref, 7) == 0
assert round(s1 - ref, 7) == 0
assert round(s2 - ref, 7) == 0
def test_wrong_eval():
# Test wrong evaluation
class F0(UserExpression):
def eval(self, values, x):
values[0] = sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])
f0 = F0(degree=2)
f1 = Expression("sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])", degree=2)
for f in [f0, f1]:
with pytest.raises(TypeError):
f("s")
with pytest.raises(TypeError):
f([])
with pytest.raises(TypeError):
f(0.5, 0.5, 0.5, values=zeros(3, 'i'))
with pytest.raises(TypeError):
f([0.3, 0.2, []])
with pytest.raises(TypeError):
f(0.3, 0.2, {})
with pytest.raises(TypeError):
f(zeros(3), values=zeros(4))
with pytest.raises(TypeError):
f(zeros(4), values=zeros(3))
def test_vector_valued_expression_member_function(mesh):
V = FunctionSpace(mesh,'CG',1)
W = VectorFunctionSpace(mesh,'CG',1, dim=3)
fs = [
Expression(("1", "2", "3"), degree=1),
Constant((1, 2, 3)),
interpolate(Constant((1, 2, 3)), W),
]
for f in fs:
u = Expression("f[0] + f[1] + f[2]", f=f, degree=1)
v = interpolate(u, V)
assert np.allclose(v.vector().get_local(), 6.0)
for g in fs:
u.f = g
v = interpolate(u, V)
assert np.allclose(v.vector().get_local(), 6.0)
def test_no_write_to_const_array():
class F1(UserExpression):
def eval(self, values, x):
x[0] = 1.0
values[0] = sin(3.0*x[0])*sin(3.0*x[1])*sin(3.0*x[2])
mesh = UnitCubeMesh(3, 3, 3)
f1 = F1(degree=1)
with pytest.raises(Exception):
assemble(f1*dx(mesh))
def test_compute_vertex_values(mesh):
from numpy import zeros, all, array
e0 = Expression("1", degree=0)
e1 = Expression(("1", "2", "3"), degree=0)
e0_values = e0.compute_vertex_values(mesh)
e1_values = e1.compute_vertex_values(mesh)
assert all(e0_values == 1)
assert all(e1_values[:mesh.num_vertices()] == 1)
assert all(e1_values[mesh.num_vertices():mesh.num_vertices()*2] == 2)
assert all(e1_values[mesh.num_vertices()*2:mesh.num_vertices()*3] == 3)
def test_runtime_exceptions():
def noDefaultValues():
Expression("a")
def wrongDefaultType():
Expression("a", a="1", degree=1)
def wrongParameterNames0():
Expression("foo", bar=1.0, degree=1)
def wrongParameterNames1():
Expression("user_parameters", user_parameters=1.0, degree=1)
with pytest.raises(RuntimeError):
noDefaultValues()
with pytest.raises(RuntimeError):
wrongDefaultType()
with pytest.raises(RuntimeError):
wrongParameterNames0()
with pytest.raises(RuntimeError):
wrongParameterNames1()
def test_fail_expression_compilation():
# Compilation failure only happens on one process,
# and involves a barrier to let the compilation finish
# before the other processes loads from disk.
# This tests that a failure can be caught without deadlock.
def invalidCppExpression():
Expression("/", degree=0)
with pytest.raises(RuntimeError):
invalidCppExpression()
def test_element_instantiation():
class F0(UserExpression):
def eval(self, values, x):
values[0] = 1.0
class F1(UserExpression):
def eval(self, values, x):
values[0] = 1.0
values[1] = 1.0
def value_shape(self):
return (2,)
class F2(UserExpression):
def eval(self, values, x):
values[0] = 1.0
values[1] = 1.0
values[2] = 1.0
values[3] = 1.0
def value_shape(self):
return (2, 2)
e0 = Expression("1", degree=0)
assert e0.ufl_element().cell() is None
e1 = Expression("1", cell=triangle, degree=0)
assert not e1.ufl_element().cell() is None
e2 = Expression("1", cell=triangle, degree=2)
assert e2.ufl_element().degree() == 2
e3 = Expression(["1", "1"], cell=triangle, degree=0)
assert isinstance(e3.ufl_element(), VectorElement)
e4 = Expression((("1", "1"), ("1", "1")), cell=triangle, degree=0)
assert isinstance(e4.ufl_element(), TensorElement)
f0 = F0(degree=0)
assert f0.ufl_element().cell() is None
f1 = F0(cell=triangle, degree=0)
assert not f1.ufl_element().cell() is None
f2 = F0(cell=triangle, degree=2)
assert f2.ufl_element().degree() == 2
f3 = F1(cell=triangle, degree=0)
assert isinstance(f3.ufl_element(), VectorElement)
f4 = F2(cell=triangle, degree=0)
assert isinstance(f4.ufl_element(), TensorElement)
def test_num_literal():
e0 = Expression("1e10", degree=0)
assert e0(0, 0, 0) == 1e10
e1 = Expression("1e-10", degree=0)
assert e1(0, 0, 0) == 1e-10
e2 = Expression("1e+10", degree=0)
assert e2(0, 0, 0) == 1e+10
e3 = Expression(".5", degree=0)
assert e3(0, 0, 0) == 0.5
e4 = Expression("x[0] * sin(.5)", degree=2)
assert e4(0, 0, 0) == 0.
e5 = Expression(["2*t0", "-t0"], t0=1.0, degree=0)
values = e5(0, 0, 0)
assert values[0] == 2.
assert values[1] == -1.
def test_name_space_usage(mesh):
e0 = Expression("std::sin(x[0])*cos(x[1])", degree=2)
e1 = Expression("sin(x[0])*std::cos(x[1])", degree=2)
assert round(assemble(e0*dx(mesh)) - assemble(e1*dx(mesh)), 7) == 0
def test_generic_function_attributes(mesh, V):
tc = Constant(2.0)
te = Expression("value", value=tc, degree=0)
assert round(tc(0) - te(0), 7) == 0
tc.assign(1.0)
assert round(tc(0) - te(0), 7) == 0
tf = Function(V)
tf.vector()[:] = 1.0
e0 = Expression(["2*t", "-t"], t=tc, degree=0)
e1 = Expression(["2*t0", "-t0"], t0=1.0, degree=0)
e2 = Expression("t", t=te, degree=0)
e3 = Expression("t", t=tf, degree=0)
assert (round(assemble(inner(e0, e0)*dx(mesh)) -
assemble(inner(e1, e1)*dx(mesh)), 7) == 0)
assert (round(assemble(inner(e2, e2)*dx(mesh)) -
assemble(inner(e3, e3)*dx(mesh)), 7) == 0)
tc.assign(3.0)
e1.t0 = float(tc)
assert (round(assemble(inner(e0, e0)*dx(mesh)) -
assemble(inner(e1, e1)*dx(mesh)), 7) == 0)
tc.assign(5.0)
assert assemble(inner(e2, e2)*dx(mesh)) != assemble(inner(e3, e3)*dx(mesh))
assert (round(assemble(e0[0]*dx(mesh)) -
assemble(2*e2*dx(mesh)), 7) == 0)
e2.t = e3.t
assert (round(assemble(inner(e2, e2)*dx(mesh)) -
assemble(inner(e3, e3)*dx(mesh)), 7) == 0)
W = FunctionSpace(mesh, V.ufl_element()*V.ufl_element())
# Test wrong kwargs
with pytest.raises(Exception):
Expression("t", t=mesh, degree=0)
with pytest.raises(Exception):
Expression("t", t=W, degree=0)
# Test using generic function parameter with wrong shape
f2 = Function(W)
e2.t = f2
if has_debug(): # The condition is caught by assertion
with pytest.raises(RuntimeError):
e2(0, 0)
# Test user_parameters assignment
assert "value" in te.user_parameters
te.user_parameters["value"] = Constant(5.0)
assert te(0.0) == 5.0
te.user_parameters.update(dict(value=Constant(3.0)))
assert te(0.0) == 3.0
te.user_parameters.update([("value", Constant(4.0))])
assert te(0.0) == 4.0
# Test wrong assignment
with pytest.raises(Exception):
te.user_parameters.__setitem__("value", 1.0)
with pytest.raises(KeyError):
te.user_parameters.__setitem__("values", 1.0)
def test_doc_string_eval():
"""
This test tests all features documented in the doc string of
Expression. If this test breaks and it is fixed the corresponding fixes
need also be updated in the docstring.
"""
square = UnitSquareMesh(10, 10)
V = VectorFunctionSpace(square, "CG", 1)
f0 = Expression('sin(x[0]) + cos(x[1])', degree=1)
f1 = Expression(('cos(x[0])', 'sin(x[1])'), element=V.ufl_element())
assert round(f0(0, 0) - sum(f1(0, 0)), 7) == 0
f2 = Expression((('exp(x[0])', 'sin(x[1])'),
('sin(x[0])', 'tan(x[1])')), degree=1)
assert round(sum(f2(0, 0)) - 1.0, 7) == 0
f = Expression('A*sin(x[0]) + B*cos(x[1])', A=2.0, B=Constant(4.0),
degree=2)
assert round(f(pi/4, pi/4) - 6./sqrt(2), 7) == 0
f.A = 5.0
f.B = Expression("value", value=6.0, degree=0)
assert round(f(pi/4, pi/4) - 11./sqrt(2), 7) == 0
f.user_parameters["A"] = 1.0
f.user_parameters["B"] = Constant(5.0)
assert round(f(pi/4, pi/4) - 6./sqrt(2), 7) == 0
def test_doc_string_python_expressions(mesh):
"""This test tests all features documented in the doc string of
Expression. If this test breaks and it is fixed the corresponding
fixes need also be updated in the docstring.
"""
square = UnitSquareMesh(4, 4)
class MyExpression0(UserExpression):
def eval(self, value, x):
dx = x[0] - 0.5
dy = x[1] - 0.5
value[0] = 500.0*exp(-(dx*dx + dy*dy)/0.02)
value[1] = 250.0*exp(-(dx*dx + dy*dy)/0.01)
def value_shape(self):
return (2,)
f0 = MyExpression0(degree=2)
values = f0(0.2, 0.3)
dx = 0.2 - 0.5
dy = 0.3 - 0.5
assert round(values[0] - 500.0*exp(-(dx*dx + dy*dy)/0.02), 7) == 0
assert round(values[1] - 250.0*exp(-(dx*dx + dy*dy)/0.01), 7) == 0
ufc_cell_attrs = ["cell_shape", "index", "topological_dimension",
"geometric_dimension", "local_facet", "mesh_identifier"]
class MyExpression1(UserExpression):
def eval_cell(self_expr, value, x, ufc_cell):
# Check attributes in ufc cell
for attr in ufc_cell_attrs:
assert hasattr(ufc_cell, attr)
if ufc_cell.index > 10:
value[0] = 1.0
else:
value[0] = -1.0
f1 = MyExpression1(degree=0)
assemble(f1*ds(square))
class MyExpression2(UserExpression):
def __init__(self, mesh, domain, *arg, **kwargs):
super().__init__(*arg, **kwargs)
self._mesh = mesh
self._domain = domain
def eval(self, values, x):
pass
cell_data = MeshFunction('size_t', square, square.topology().dim())
P1 = FiniteElement("Lagrange", square.ufl_cell(), 1)
f3 = MyExpression2(square, cell_data, element=P1)
assert id(f3._mesh) == id(square)
assert id(f3._domain) == id(cell_data)
def test_rename():
c1 = Expression("1", degree=2)
c1.rename("constant1","")
assert c1.name()=="constant1"
def test_restrict(mesh, V):
from numpy import array
# Non-linear would be better
expr = Expression('x[0]+x[1]+x[2]', degree=1)
# Arbitrary cell and point within it.
cell = list(cells(mesh))[-1]
x = cell.midpoint()[:]
element = V.dolfin_element()
weights = expr.restrict(element, cell)
coords = array(cell.get_vertex_coordinates())
basis = element.evaluate_basis_all(x, coords, cell.orientation())
assert near(np.dot(weights, basis), x[0]+x[1]+x[2])
|