File: test_function.py

package info (click to toggle)
dolfin 2019.2.0~legacy20240219.1c52e83-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 31,700 kB
  • sloc: xml: 104,040; cpp: 102,227; python: 24,356; sh: 460; makefile: 330; javascript: 226
file content (458 lines) | stat: -rwxr-xr-x 12,399 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
"""Unit tests for the Function class"""

# Copyright (C) 2011-2014 Garth N. Wells
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.

import pytest
from dolfin import *
import ufl_legacy as ufl

from dolfin_utils.test import skip_in_parallel, pushpop_parameters, fixture

@fixture
def mesh():
    return UnitCubeMesh(8, 8, 8)


@fixture
def R(mesh):
    return FunctionSpace(mesh, 'R', 0)


@fixture
def V(mesh):
    return FunctionSpace(mesh, 'CG', 1)


@fixture
def W(mesh):
    return VectorFunctionSpace(mesh, 'CG', 1)


def test_name_argument(W):
    u = Function(W)
    v = Function(W, name="v")
    assert u.name() == "f_%d" % u.count()
    assert v.name() == "v"
    assert str(v) == "v"


def test_in_function_space(W):
    u = Function(W)
    v = Function(W)
    assert u in W
    assert u in u.function_space()
    assert u in v.function_space()
    for i, usub in enumerate(u.split()):
        assert usub in W.sub(i)


def test_compute_vertex_values(V, W, mesh):
    from numpy import zeros, all, array
    u = Function(V)
    v = Function(W)

    u.vector()[:] = 1.
    v.vector()[:] = 1.

    u_values = u.compute_vertex_values(mesh)
    v_values = v.compute_vertex_values(mesh)

    assert all(u_values == 1)

    u_values2 = u.compute_vertex_values()

    assert all(u_values == u_values2)


def test_assign(V, W):
    from ufl_legacy.algorithms import replace

    for V0, V1, vector_space in [(V, W, False), (W, V, True)]:
        u = Function(V0)
        u0 = Function(V0)
        u1 = Function(V0)
        u2 = Function(V0)
        u3 = Function(V1)

        u.vector()[:] = 1.0
        u0.vector()[:] = 2.0
        u1.vector()[:] = 3.0
        u2.vector()[:] = 4.0
        u3.vector()[:] = 5.0

        scalars = {u: 1.0, u0: 2.0, u1: 3.0, u2: 4.0, u3: 5.0}

        uu = Function(V0)
        uu.assign(2*u)
        assert uu.vector().sum() == u0.vector().sum()

        uu = Function(V1)
        uu.assign(3*u)
        assert uu.vector().sum() == u1.vector().sum()

        # Test complex assignment
        expr = 3*u - 4*u1 - 0.1*4*u*4 + u2 + 3*u0/3./0.5
        expr_scalar = 3 - 4*3 - 0.1*4*4+4. + 3*2./3./0.5
        uu.assign(expr)
        assert (round(uu.vector().sum() -
                      float(expr_scalar*uu.vector().size()), 7) == 0)

        # Test expression scaling
        expr = 3*expr
        expr_scalar *= 3
        uu.assign(expr)
        assert (round(uu.vector().sum() -
                      float(expr_scalar*uu.vector().size()), 7) == 0)

        # Test expression scaling
        expr = expr/4.5
        expr_scalar /= 4.5
        uu.assign(expr)
        assert (round(uu.vector().sum() -
                      float(expr_scalar*uu.vector().size()), 7) == 0)

        # Test self assignment
        expr = 3*u - Constant(5)*u2 + u1 - 5*u
        expr_scalar = 3 - 5*4. + 3. - 5
        u.assign(expr)
        assert (round(u.vector().sum() -
                      float(expr_scalar*u.vector().size()), 7) == 0)

        # Test zero assignment
        u.assign(-u2/2 + 2*u1 - u1/0.5 + u2*0.5)
        assert round(u.vector().sum() - 0.0, 7) == 0

        # Test erroneous assignments
        uu = Function(V1)
        f = Expression("1.0", degree=0)
        with pytest.raises(RuntimeError):
            uu.assign(1.0)
        with pytest.raises(RuntimeError):
            uu.assign(4*f)

        if not vector_space:
            with pytest.raises(RuntimeError):
                uu.assign(u*u0)
            with pytest.raises(RuntimeError):
                uu.assign(4/u0)
            with pytest.raises(RuntimeError):
                uu.assign(4*u*u1)


def test_axpy(V, W):
    for V0, V1, vector_space in [(V, W, False), (W, V, True)]:
        u = Function(V0)
        u0 = Function(V0)
        u1 = Function(V0)
        u2 = Function(V0)
        u3 = Function(V1)

        u.vector()[:] = 1.0
        u0.vector()[:] = 2.0
        u1.vector()[:] = 3.0
        u2.vector()[:] = 4.0
        u3.vector()[:] = 5.0

        axpy = FunctionAXPY(u1, 2.0)
        u.assign(axpy)
        expr_scalar = 3*2

        assert (round(u.vector().sum() -
                      float(expr_scalar*u.vector().size()), 7) == 0)

        axpy = FunctionAXPY([(2.0, u1), (3.0, u2)])

        u.assign(axpy)
        expr_scalar = 3*2+3*4.0

        assert (round(u.vector().sum() -
                      float(expr_scalar*u.vector().size()), 7) == 0)

        axpy = axpy*3.0
        u.assign(axpy)
        expr_scalar *= 3.0

        assert (round(u.vector().sum() -
                      float(expr_scalar*u.vector().size()), 7) == 0)

        axpy0 = axpy/5.0
        u.assign(axpy0)
        expr_scalar0 = expr_scalar/5.0

        assert (round(u.vector().sum() -
                      float(expr_scalar0*u.vector().size()), 7) == 0)

        axpy1 = axpy0+axpy
        u.assign(axpy1)
        expr_scalar1 = expr_scalar0 + expr_scalar

        assert (round(u.vector().sum() -
                      float(expr_scalar1*u.vector().size()), 7) == 0)

        axpy1 = axpy0-axpy
        u.assign(axpy1)
        expr_scalar1 = expr_scalar0 - expr_scalar

        assert (round(u.vector().sum() -
                      float(expr_scalar1*u.vector().size()), 7) == 0)

        axpy1 = axpy0+u1
        u.assign(axpy1)
        expr_scalar1 = expr_scalar0 + 3.0

        assert (round(u.vector().sum() -
                      float(expr_scalar1*u.vector().size()), 7) == 0)

        axpy1 = axpy0 - u2
        u.assign(axpy1)
        expr_scalar1 = expr_scalar0 - 4.0

        assert (round(u.vector().sum() -
                      float(expr_scalar1*u.vector().size()), 7) == 0)

        with pytest.raises((RuntimeError, TypeError)):
            FunctionAXPY(u, u3, 0)

        axpy = FunctionAXPY(u3, 2.0)

        with pytest.raises(RuntimeError):
            axpy + u

def test_call(R, V, W, mesh):
    from numpy import zeros, all, array
    u0 = Function(R)
    u1 = Function(V)
    u2 = Function(W)
    e0 = Expression("x[0] + x[1] + x[2]", degree=1)
    e1 = Expression(("x[0] + x[1] + x[2]",
                     "x[0] - x[1] - x[2]",
                     "x[0] + x[1] + x[2]"), degree=1)

    u0.vector()[:] = 1.0
    u1.interpolate(e0)
    u2.interpolate(e1)

    p0 = (Vertex(mesh, 0).point() + Vertex(mesh, 1).point())/2.0
    x0 = (mesh.coordinates()[0] + mesh.coordinates()[1])/2.0
    x1 = tuple(x0)

    assert round(u0(*x1) - u0(x0), 7) == 0
    assert round(u0(x1) - u0(p0), 7) == 0
    assert round(u1(x1) - u1(x0), 7) == 0
    assert round(u1(*x1) - u1(p0), 7) == 0
    assert round(u2(x1)[0] - u1(p0), 7) == 0

    assert all(u2(*x1) == u2(x0))
    assert all(u2(*x1) == u2(p0))

    values = zeros(mesh.geometry().dim(), dtype='d')
    u2(p0, values=values)
    assert all(values == u2(x0))

    with pytest.raises(TypeError):
        u0([0, 0, 0, 0])
    with pytest.raises(TypeError):
        u0([0, 0])

def test_constant_float_conversion():
    c = Constant(3.45)
    assert float(c) == 3.45


def test_real_function_float_conversion1(R):
    c = Function(R)
    assert float(c) == 0.0


def test_real_function_float_conversion2(R):
    c = Function(R)
    c.assign(Constant(2.34))
    assert float(c) == 2.34


def test_real_function_float_conversion3(R):
    c = Function(R)
    c.vector()[:] = 1.23
    assert float(c) == 1.23


def test_scalar_conditions(R):
    c = Function(R)
    c.vector()[:] = 1.5

    # Float conversion does not interfere with boolean ufl expressions
    assert isinstance(lt(c, 3), ufl.classes.LT)
    assert not isinstance(lt(c, 3), bool)

    # Float conversion is not implicit in boolean Python expressions
    assert isinstance(c < 3, ufl.classes.LT)
    assert not isinstance(c < 3, bool)

    # == is used in ufl to compare equivalent representations,
    # <,> result in LT/GT expressions, bool conversion is illegal

    # Note that 1.5 < 0 == False == 1.5 < 1, but that is not what we
    # compare here:
    assert not (c < 0) == (c < 1)
    # This protects from "if c < 0: ..." misuse:
    with pytest.raises(ufl.UFLException):
        bool(c < 0)
    with pytest.raises(ufl.UFLException):
        not c < 0


def test_interpolation_mismatch_rank0(W):
    f = Expression("1.0", degree=0)
    with pytest.raises(RuntimeError):
        interpolate(f, W)


def test_interpolation_mismatch_rank1(W):
    f = Expression(("1.0", "1.0"), degree=0)
    with pytest.raises(RuntimeError):
        interpolate(f, W)


def test_interpolation_jit_rank0(V):
    f = Expression("1.0", degree=0)
    w = interpolate(f, V)
    x = w.vector()
    assert x.max() == 1
    assert x.min() == 1


@skip_in_parallel
def test_extrapolation(V, pushpop_parameters):
    original_parameters = parameters["allow_extrapolation"]

    f0 = Function(V)
    with pytest.raises(RuntimeError):
        f0.__call__((0., 0, -1))

    mesh1 = UnitSquareMesh(3, 3)
    V1 = FunctionSpace(mesh1, "CG", 1)

    mesh2 = UnitTriangleMesh.create()
    V2 = FunctionSpace(mesh2, "CG", 1)

    parameters["allow_extrapolation"] = True
    f1 = Function(V1)
    f1.vector()[:] = 1.0
    assert round(f1(0., -1) - 1.0, 7) == 0

    parameters["allow_extrapolation"] = False
    f2 = Function(V2)
    with pytest.raises(RuntimeError):
        f2.__call__((0., -1.))

    parameters["allow_extrapolation"] = True
    f3 = Function(V2)
    f3.vector()[:] = 1.0
    assert round(f3(0., -1) - 1.0, 7) == 0

    parameters["allow_extrapolation"] = original_parameters

    f1 = Function(V1)
    f1.set_allow_extrapolation(True)
    f1.vector()[:] = 1.0
    assert round(f1(0., -1) - 1.0, 7) == 0

    f2 = Function(V2)

    f2.set_allow_extrapolation(False)
    with pytest.raises(RuntimeError):
        f2.__call__((0., -1.))

    f2.set_allow_extrapolation(True)
    f2.vector()[:] = 1.0
    assert round(f2(0., -1) - 1.0, 7) == 0

    f2.set_allow_extrapolation(True)
    assert f2.get_allow_extrapolation() is True
    f2.set_allow_extrapolation(False)
    assert f2.get_allow_extrapolation() is False


@skip_in_parallel
def test_near_evaluations(R, mesh):
    # Test that we allow point evaluation that are slightly outside
    parameters["allow_extrapolation"] = False

    u0 = Function(R)
    u0.vector()[:] = 1.0
    a = Vertex(mesh, 0).point()
    offset = 0.99*DOLFIN_EPS

    a_shift_x = Point(a[0] - offset, a[1], a[2])
    assert round(u0(a) - u0(a_shift_x), 7) == 0

    a_shift_xyz = Point(a[0] - offset / sqrt(3),
                        a[1] - offset / sqrt(3),
                        a[2] - offset / sqrt(3))
    assert round(u0(a) - u0(a_shift_xyz), 7) == 0


def test_interpolation_jit_rank1(W):
    f = Expression(("1.0", "1.0", "1.0"), degree=0)
    w = interpolate(f, W)
    x = w.vector()
    assert x.max() == 1
    assert x.min() == 1


@skip_in_parallel
def test_interpolation_old(V, W, mesh):

    class F0(UserExpression):
        def eval(self, values, x):
            values[0] = 1.0

    class F1(UserExpression):
        def eval(self, values, x):
            values[0] = 1.0
            values[1] = 1.0
            values[2] = 1.0

        def value_shape(self):
            return (3,)

    # Scalar interpolation
    f0 = F0(degree=0)
    f = Function(V)
    f.interpolate(f0)
    assert round(f.vector().norm("l1") - mesh.num_vertices(), 7) == 0

    # Vector interpolation
    f1 = F1(degree=0)
    f = Function(W)
    f.interpolate(f1)
    assert round(f.vector().norm("l1") - 3*mesh.num_vertices(), 7) == 0

def test_restrict(mesh, V):
    from numpy import allclose

    expr = Expression('x[0]+x[1]+x[2]', degree=1)
    u = interpolate(expr, V)

    cell = list(cells(mesh))[-1] # Arbitrary cell
    element = V.dolfin_element()

    u_restr = u.restrict(element, cell)
    expr_restr = expr.restrict(element, cell) # Covered in test_expression.py

    assert allclose(u_restr, expr_restr)