1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
"""Unit tests for the linear algebra interface"""
# Copyright (C) 2008 Johan Hake
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 2008-09-30
# Last changed: 2014-05-30
import pytest
from dolfin import *
import sys
from dolfin_utils.test import *
# Lists of backends supporting or not supporting data access
data_backends = []
no_data_backends = [("PETSc", ""), ("Tpetra", "")]
# Add serial only backends
if MPI.size(MPI.comm_world) == 1:
# TODO: What about "Dense" and "Sparse"? The sub_backend wasn't
# used in the old test.
data_backends += [("Eigen", "")]
# Remove backends we haven't built with
data_backends = [b for b in data_backends if has_linear_algebra_backend(b[0])]
no_data_backends = [b for b in no_data_backends if has_linear_algebra_backend(b[0])]
any_backends = data_backends + no_data_backends
# Fixtures setting up and resetting the global linear algebra backend
# for a list of backends
any_backend = set_parameters_fixture("linear_algebra_backend",
any_backends, lambda x: x[0])
data_backend = set_parameters_fixture("linear_algebra_backend",
data_backends, lambda x: x[0])
no_data_backend = set_parameters_fixture("linear_algebra_backend",
no_data_backends, lambda x: x[0])
# With and without explicit backend choice
use_backend = true_false_fixture
def xtest_deterministic_partition():
# Works with parmetis, not with scotch with mpirun -np 3
mesh1 = UnitSquareMesh(3, 3)
mesh2 = UnitSquareMesh(3, 3)
V1 = FunctionSpace(mesh1, "Lagrange", 1)
V2 = FunctionSpace(mesh2, "Lagrange", 1)
assert V1.dofmap().ownership_range() == V2.dofmap().ownership_range()
def assemble_vectors(mesh):
V = FunctionSpace(mesh, "Lagrange", 2)
W = FunctionSpace(mesh, "Lagrange", 1)
v = TestFunction(V)
t = TestFunction(W)
return assemble(v*dx), assemble(t*dx)
def get_forms(mesh):
V = FunctionSpace(mesh, "Lagrange", 2)
W = FunctionSpace(mesh, "Lagrange", 1)
v = TestFunction(V)
u = TrialFunction(V)
s = TrialFunction(W)
# Forms
a = dot(grad(u),grad(v))*dx
b = v*s*dx
return a, b
class TestBasicLaOperations:
def test_vector(self, any_backend):
self.backend, self.sub_backend = any_backend
from numpy import ndarray, linspace, array, fromiter
from numpy import intp,int16,int32,int64
from numpy import uint,uintp,uint16,uint32,uint64
mesh = UnitSquareMesh(3, 3)
v, w = assemble_vectors(mesh)
# Get local ownership range (relevant for parallel vectors)
n0, n1 = v.local_range()
distributed = True
if (n1 - n0) == v.size():
distributed = False
# Test set and access with different integers
lind = 2
for T in [int,int16,int32,int64,uint,uintp,uint16,uint32,uint64,\
intp]:
v[T(lind)] = 2.0
assert round(v[T(lind)] - 2.0, 7) == 0
A = v.copy()
B = as_backend_type(v.copy())
gind = 5
lind = gind-n0
# Test global index access
if A.owns_index(gind):
assert round(A[lind] - B[lind], 7) == 0
lind0 = 5
round(A[lind0] - B[lind0], 7) == 0
B *= 0.5
A *= 2
assert round(A[lind0] - 4*B[lind0], 7) == 0
B /= 2
A /= 0.5
assert round(A[lind0] - 16*B[lind0], 7) == 0
val1 = A[lind0]
val2 = B[lind0]
A += B
assert round(A[lind0] - val1 - val2, 7) == 0
A -= B
assert round(A[lind0] - val1, 7) == 0
C = 16*B
assert round(A[lind0] - C[lind0], 7) == 0
D = (C + B)*5
assert round(D[lind0] - (val1 + val2)*5, 7) == 0
F = (A-B)/4
assert round(F[lind0] - (val1 - val2)/4, 7) == 0
A.axpy(100, B)
assert round(A[lind0] - val1 - val2*100, 7) == 0
A2 = A.get_local()
assert isinstance(A2,ndarray)
assert A2.shape == (n1 - n0, )
assert round(A2[lind0] - A[lind0], 7) == 0
assert round(MPI.sum(A.mpi_comm(), A2.sum()) - A.sum(), 7) == 0
B2 = B.get_local()
inds = [1,3,6,9,15,20,24,28,32,40,50,60,70,100000]
# Extract owned local indices
inds0 = array([i for i in inds if v.owns_index(i)])
linds0 = [i-n0 for i in inds0]
linds1 = array(linds0, 'i')
linds2 = array(linds0, 'I')
A[linds2] = inds0
A2[linds0] = inds0
G = A[linds0]
G1 = A[linds1]
G2 = A2[linds2]
G3 = A[A > 1]
G4 = A2[A2 > 1]
A3 = fromiter(A, "d")
if A.owns_index(15):
a = A[15-n0]
b = 1.e10
assert round(G1.sum() - G.sum(), 7) == 0
assert round(G2.sum() - G.sum(), 7) == 0
assert len(G3) == len(G4)
assert round(G3.sum() - G4.sum(), 7) == 0
assert all(val==G[i] for i, val in enumerate(G))
assert (G==G1).all()
assert (G<=G1).all()
assert (G>=G1).all()
assert not (G<G1).any()
assert not (G>G1).any()
if A.owns_index(15): assert a in A
assert b not in A
assert (A3==A2).all()
A[:] = A2
assert (A.get_local()==A2).all()
H = A.copy()
H[linds0] = G
C[:] = 2
D[:] = 2
assert round(C[0] - 2, 7) == 0
assert round(C[len(linds0)-1] - 2, 7) == 0
assert round(C.sum() - D.sum(), 7) == 0
C[linds0] = 3
assert round(C[linds0].sum() - 3*len(linds0), 7) == 0
def wrong_index(ind):
A[ind]
with pytest.raises(IndexError):
wrong_index(-len(A)-1)
with pytest.raises(IndexError):
wrong_index(A[-1])
with pytest.raises(IndexError):
wrong_index(len(A)+1)
with pytest.raises(TypeError):
wrong_index("jada")
with pytest.raises(TypeError):
wrong_index(.5)
with pytest.raises(IndexError):
wrong_index([-len(A)-1, 2])
with pytest.raises(IndexError):
wrong_index([len(A), 2])
def wrong_dim(ind0, ind1):
A[ind0] = B[ind1]
with pytest.raises(IndexError):
wrong_dim([0,2], [0,2,4])
with pytest.raises(IndexError):
wrong_dim([0,2], slice(0,4,1))
A2 = A.get_local()
A *= B
A2 *= B2
I = A*B
I2 = A2*B2
assert round(A.sum() - MPI.sum(A.mpi_comm(), A2.sum()), 7) == 0
assert round(I.sum() - MPI.sum(A.mpi_comm(), I2.sum()), 7) == 0
def wrong_assign(A, ind):
A[linds0[::2]] = linds0[::2]
def test_matrix_vector(self, any_backend, use_backend):
self.backend, self.sub_backend = any_backend
from numpy import dot, absolute
mesh = UnitSquareMesh(3, 3)
a, b = get_forms(mesh)
if use_backend:
backend = getattr(cpp.la, self.backend+self.sub_backend+'Factory').instance()
else:
backend = None
A = assemble(a, backend=backend)
B = assemble(b, backend=backend)
v, w = assemble_vectors(mesh)
# Get local ownership range (relevant for parallel vectors)
n0, n1 = v.local_range()
distributed = True
if (n1 - n0) == v.size():
distributed = False
# Reference values
v_norm = 0.181443684651
w_norm = 0.278394377377
A_norm = 31.947874212
B_norm = 0.11052313564
Av_norm = 0.575896483442
Bw_norm = 0.0149136743079
Cv_norm = 0.00951459156865
assert round(v.norm('l2') - v_norm, 7) == 0
assert round(w.norm('l2') - w_norm, 7) == 0
assert round(A.norm('frobenius') - A_norm, 7) == 0
assert round(B.norm('frobenius') - B_norm, 7) == 0
u = A*v
assert len(u) == len(v)
# Test basic square matrix multiply results
assert round(v.norm('l2') - v_norm, 7) == 0
assert round(u.norm('l2') - Av_norm, 7) == 0
# Test rectangular matrix multiply results
assert round((B*w).norm('l2') - Bw_norm, 7) == 0
# Test transpose multiply (rectangular)
x = Vector()
B.transpmult(v, x)
assert round(x.norm('l2') - Cv_norm, 7) == 0
# Miscellaneous tests
u2 = 2*u - A*v
assert round(u2[4] - u[4], 7) == 0
u3 = 2*u + -1.0*(A*v)
assert round(u3[4] - u[4], 7) == 0
# Numpy arrays are not aligned in parallel
if distributed:
return
v_numpy = v.get_local()
A_numpy = A.array()
u_numpy = dot(A_numpy, v_numpy)
u_numpy2 = A*v_numpy
assert absolute(u.get_local() - u_numpy).sum() < DOLFIN_EPS*len(v)
assert absolute(u_numpy2 - u_numpy).sum() < DOLFIN_EPS*len(v)
def test_vector_data(self, no_data_backend):
mesh = UnitSquareMesh(3, 3)
v, w = assemble_vectors(mesh)
v = as_backend_type(v)
def no_attribute():
v.data()
with pytest.raises(AttributeError):
no_attribute()
def test_vector_negation(self):
V = FunctionSpace(UnitSquareMesh(10,10), "CG",1)
u = TestFunction(V)
v = Function(V)
b = u*v*dx
B = assemble(b)
assert((-B == -1*B).all())
|