File: test_assembly_derivatives.py

package info (click to toggle)
dolfin 2019.2.0~legacy20240219.1c52e83-18
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 31,700 kB
  • sloc: xml: 104,040; cpp: 102,227; python: 24,356; sh: 460; makefile: 330; javascript: 226
file content (248 lines) | stat: -rwxr-xr-x 8,463 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""System integration tests for ufl-derivative-jit-assembly chain."""

# Copyright (C) 2011 Martin S. Alnaes
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2011-20-09
# Last changed: 2011-20-09

import unittest
import numpy
import math
from dolfin import *


def test_diff_then_integrate():

    # Define 1D geometry
    n = 21
    mesh = UnitIntervalMesh(n)

    # Shift and scale mesh
    x0, x1 = 1.5, 3.14
    mesh.coordinates()[:] *= (x1 - x0)
    mesh.coordinates()[:] += x0

    x = SpatialCoordinate(mesh)[0]
    xs = 0.1+0.8*x/x1 # scaled to be within [0.1,0.9]

    # Define list of expressions to test, and configure
    # accuracies these expressions are known to pass with.
    # The reason some functions are less accurately integrated is
    # likely that the default choice of quadrature rule is not perfect
    F_list = []
    def reg(exprs, acc=10):
        for expr in exprs:
            F_list.append((expr, acc))

    # FIXME: 0*dx and 1*dx fails in the ufl-ffc-jit framework somewhere
    #reg([Constant(0.0, cell=cell)])
    #reg([Constant(1.0, cell=cell)])
    monomial_list = [x**q for q in range(2, 6)]
    reg(monomial_list)
    reg([2.3*p+4.5*q for p in monomial_list for q in monomial_list])
    reg([x**x])
    reg([x**(x**2)], 8)
    reg([x**(x**3)], 6)
    reg([x**(x**4)], 2)
    # Special functions:
    reg([atan(xs)], 8)
    reg([sin(x), cos(x), exp(x)], 5)
    reg([ln(xs), pow(x, 2.7), pow(2.7, x)], 3)
    reg([asin(xs), acos(xs)], 1)
    reg([tan(xs)], 7)

    try:
        import scipy
    except:
        scipy = None

    if hasattr(math, 'erf') or scipy is not None:
        reg([erf(xs)])
    else:
        print("Warning: skipping test of erf, old python version and no scipy.")

    if 0:
        print("Warning: skipping tests of bessel functions, doesn't build on all platforms.")
    elif scipy is None:
        print("Warning: skipping tests of bessel functions, missing scipy.")
    else:
        for nu in (0,1,2):
            # Many of these are possibly more accurately integrated,
            # but 4 covers all and is sufficient for this test
            reg([bessel_J(nu, xs), bessel_Y(nu, xs), bessel_I(nu, xs), bessel_K(nu, xs)], 4)

    # To handle tensor algebra, make an x dependent input tensor
    # xx and square all expressions
    def reg2(exprs, acc=10):
        for expr in exprs:
            F_list.append((inner(expr,expr), acc))
    xx  = as_matrix([[2*x**2, 3*x**3], [11*x**5, 7*x**4]])
    x3v = as_vector([3*x**2, 5*x**3, 7*x**4])
    cc  = as_matrix([[2, 3], [4, 5]])
    reg2([xx])
    reg2([x3v])
    reg2([cross(3*x3v, as_vector([-x3v[1], x3v[0], x3v[2]]))])
    reg2([xx.T])
    reg2([tr(xx)])
    reg2([det(xx)])
    reg2([dot(xx, 0.1*xx)])
    reg2([outer(xx, xx.T)])
    reg2([dev(xx)])
    reg2([sym(xx)])
    reg2([skew(xx)])
    reg2([elem_mult(7*xx, cc)])
    reg2([elem_div(7*xx, xx+cc)])
    reg2([elem_pow(1e-3*xx, 1e-3*cc)])
    reg2([elem_pow(1e-3*cc, 1e-3*xx)])
    reg2([elem_op(lambda z: sin(z) + 2, 0.03*xx)], 2) # pretty inaccurate...

    # FIXME: Add tests for all UFL operators:
    # These cause discontinuities and may be harder to test in the
    # above fashion:
    #'inv', 'cofac',
    #'eq', 'ne', 'le', 'ge', 'lt', 'gt', 'And', 'Or', 'Not',
    #'conditional', 'sign',
    #'jump', 'avg',
    #'LiftingFunction', 'LiftingOperator',

    # FIXME: Test other derivatives: (but algorithms for operator
    # derivatives are the same!):
    #'variable', 'diff',
    #'Dx', 'grad', 'div', 'curl', 'rot', 'Dn', 'exterior_derivative',

    # Run through all operators defined above and compare integrals
    debug = 0
    for F, acc in F_list:
        # Apply UFL differentiation
        f = diff(F, SpatialCoordinate(mesh))[...,0]
        if debug:
            print(F)
            print(x)
            print(f)

        # Apply integration with DOLFIN
        # (also passes through form compilation and jit)
        M = f*dx
        f_integral = assemble(M)

        # Compute integral of f manually from anti-derivative F
        # (passes through PyDOLFIN interface and uses UFL evaluation)
        F_diff = F((x1,)) - F((x0,))

        # Compare results. Using custom relative delta instead
        # of decimal digits here because some numbers are >> 1.
        delta = min(abs(f_integral), abs(F_diff)) * 10**-acc
        assert f_integral - F_diff <= delta


def test_div_grad_then_integrate_over_cells_and_boundary():

    # Define 2D geometry
    n = 10
    mesh = RectangleMesh(Point(0.0, 0.0), Point(2.0, 3.0), 2*n, 3*n)

    x, y = SpatialCoordinate(mesh)
    xs = 0.1+0.8*x/2 # scaled to be within [0.1,0.9]
    ys = 0.1+0.8*y/3 # scaled to be within [0.1,0.9]
    n = FacetNormal(mesh)

    # Define list of expressions to test, and configure accuracies
    # these expressions are known to pass with.  The reason some
    # functions are less accurately integrated is likely that the
    # default choice of quadrature rule is not perfect
    F_list = []
    def reg(exprs, acc=10):
        for expr in exprs:
            F_list.append((expr, acc))

    # FIXME: 0*dx and 1*dx fails in the ufl-ffc-jit framework somewhere
    #reg([Constant(0.0, cell=cell)])
    #reg([Constant(1.0, cell=cell)])
    monomial_list = [x**q for q in range(2, 6)]
    reg(monomial_list)
    reg([2.3*p+4.5*q for p in monomial_list for q in monomial_list])
    reg([xs**xs])
    reg([xs**(xs**2)], 8) # Note: Accuracies here are from 1D case, not checked against 2D results.
    reg([xs**(xs**3)], 6)
    reg([xs**(xs**4)], 2)
    # Special functions:
    reg([atan(xs)], 8)
    reg([sin(x), cos(x), exp(x)], 5)
    reg([ln(xs), pow(x, 2.7), pow(2.7, x)], 3)
    reg([asin(xs), acos(xs)], 1)
    reg([tan(xs)], 7)

    # To handle tensor algebra, make an x dependent input tensor
    # xx and square all expressions
    def reg2(exprs, acc=10):
        for expr in exprs:
            F_list.append((inner(expr,expr), acc))
    xx = as_matrix([[2*x**2, 3*x**3], [11*x**5, 7*x**4]])
    xxs = as_matrix([[2*xs**2, 3*xs**3], [11*xs**5, 7*xs**4]])
    x3v = as_vector([3*x**2, 5*x**3, 7*x**4])
    cc = as_matrix([[2, 3], [4, 5]])
    reg2([xx]) # TODO: Make unit test for UFL from this, results in listtensor with free indices
    reg2([x3v])
    reg2([cross(3*x3v, as_vector([-x3v[1], x3v[0], x3v[2]]))])
    reg2([xx.T])
    reg2([tr(xx)])
    reg2([det(xx)])
    reg2([dot(xx,0.1*xx)])
    reg2([outer(xx,xx.T)])
    reg2([dev(xx)])
    reg2([sym(xx)])
    reg2([skew(xx)])
    reg2([elem_mult(7*xx, cc)])
    reg2([elem_div(7*xx, xx+cc)])
    reg2([elem_pow(1e-3*xxs, 1e-3*cc)])
    reg2([elem_pow(1e-3*cc, 1e-3*xx)])
    reg2([elem_op(lambda z: sin(z)+2, 0.03*xx)], 2) # pretty inaccurate...

    # FIXME: Add tests for all UFL operators:
    # These cause discontinuities and may be harder to test in the
    # above fashion:
    #'inv', 'cofac',
    #'eq', 'ne', 'le', 'ge', 'lt', 'gt', 'And', 'Or', 'Not',
    #'conditional', 'sign',
    #'jump', 'avg',
    #'LiftingFunction', 'LiftingOperator',

    # FIXME: Test other derivatives: (but algorithms for operator
    # derivatives are the same!):
    #'variable', 'diff',
    #'Dx', 'grad', 'div', 'curl', 'rot', 'Dn', 'exterior_derivative',

    # Run through all operators defined above and compare integrals
    debug = 0
    if debug:
        k = 2
        F_list = F_list[1:]

    for F,acc in F_list:
        if debug: print('\n', "F:", str(F))

        # Integrate over domain and its boundary
        int_dx = assemble(div(grad(F))*dx(mesh))
        int_ds = assemble(dot(grad(F), n)*ds(mesh))

        if debug: print(int_dx, int_ds)

        # Compare results. Using custom relative delta instead of
        # decimal digits here because some numbers are >> 1.
        delta = min(abs(int_dx), abs(int_ds)) * 10**-acc
        assert int_dx - int_ds <= delta