File: demo_linear_wave_problem.py

package info (click to toggle)
dolfinx-mpc 0.10.0-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,268 kB
  • sloc: python: 7,901; cpp: 5,525; makefile: 69; sh: 4
file content (462 lines) | stat: -rw-r--r-- 14,194 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# # Anisotropic wave system with periodic boundary conditions
#
# **Author** Jørgen S. Dokken and Markus Renoldner
#
# **License** MIT
#
# This demo illustrates how to use the MPC package to enforce
# periodic boundary conditions for a linear wave problem.
#
# ## Mathematical formulation
#
# We want to compute two time-dependent functions $(u,\phi)$ on the unitsquare $\Omega=(0,1)^2$, that solve
#
# $$
# \begin{cases}
# \displaystyle \partial_{t} u + b\cdot \nabla \phi=0, \\
# \partial_{t} \phi + b\cdot \nabla u=0,
# \end{cases}
# $$
#
# where the given vectorfield satisfies $(\operatorname{div} b = 0)$, that dictates the advection direction,
# and $(f,g)$ are given functions.
#
# Smooth solutions of the above system also satisfy a decoupled version of the above system,
#
# $$
# \partial_{tt} u + b\cdot\nabla (b\cdot\nabla u) = 0.
# $$
#
# This last problem resembles the linear wave equation, which explains the wavey dynamics of the solution.
#
# The aim of this tutorial is to show how to use periodic boundary conditions.
# We will choose the following setting:
#
# $$
# \begin{align*}
# \phi|_{\Gamma_D} &=0 , \\
# \phi|_{\Gamma_l} &= \phi|_{\Gamma_r}, \\
# u|_{\Gamma_l} &= |_{\Gamma_r},
# \end{align*}
# $$
#
# where we set $(\partial\Omega = \Gamma_D\cup \Gamma_l \cup \Gamma_r)$, with
#
# $$
# \begin{align*}
# \Gamma_D &:=\{(x,y)\in \bar{\Omega}: y=0 \text{ or }y=1\},\quad&&\text{i.e. the bottom and top wall}\\
# \Gamma_l &:=\{(x,y)\in \bar{\Omega}: x=0\},\quad&&\text{i.e. the left wall}\\
# \Gamma_r &:=\{(x,y)\in \bar{\Omega}: x=1\},\quad&&\text{i.e. the right wall}.
# \end{align*}
# $$
#
# We start by the various modules required for this demo

# +
import typing

from mpi4py import MPI
from petsc4py import PETSc

import dolfinx.fem as fem
import dolfinx.la.petsc
import numpy as np
import pyvista
from basix.ufl import element
from dolfinx import default_scalar_type, plot
from dolfinx.fem import Constant, Function, assemble_scalar, form, functionspace
from dolfinx.mesh import create_unit_square, locate_entities_boundary
from ufl import (
    FacetNormal,
    MixedFunctionSpace,
    SpatialCoordinate,
    TestFunctions,
    TrialFunctions,
    dx,
    extract_blocks,
    grad,
    inner,
)

from dolfinx_mpc import (
    MultiPointConstraint,
    apply_lifting,
    assemble_matrix_nest,
    assemble_vector_nest,
    create_matrix_nest,
    create_vector_nest,
)

# -

# Next, we create some convenience functions to create a gif from a given function

# +


def create_gif(
    plotfunc: dolfinx.fem.Function, filename: str, fps: float
) -> tuple[pyvista.UnstructuredGrid, pyvista.Plotter]:
    """
    Create a GIF animation from a given plotting function and function space.

    Args:
        plotfunc: The plotting function that generates the data to be visualized.
        filename: The name of the output GIF file.
        fps: Frames per second for the GIF animation.
    Returns:
        tuple: A tuple containing the grid and plotter used for creating the GIF.

    Example:

        .. code-block:: python

            grid, plotter = create_gif(plotfunc, "output.gif", 10)

            for i in range(N):
                plotter = update_gif(...)
            finalize_gif(...)
    """
    grid = pyvista.UnstructuredGrid(*plot.vtk_mesh(plotfunc.function_space))
    plotter = pyvista.Plotter(off_screen=True)

    plotter.open_gif(filename, fps=fps)
    plotter.show_axes()  # type: ignore[call-arg]
    grid.point_data["uh1"] = plotfunc.x.array

    return grid, plotter


def update_gif(
    grid: pyvista.UnstructuredGrid,
    plotter: pyvista.Plotter,
    plotfunc: dolfinx.fem.Function,
    warp_gif: bool,
    clip_gif: bool,
    clip_normal: typing.Literal["x", "y", "z", "-x", "-y", "-z"] = "y",
):
    """
    Update the plotter with the given grid and plot function, and optionally warp or clip the grid.

    Args:
        grid: The grid to be plotted.
        plotter: The plotter instance used for plotting.
        plotfunc: An object containing the data to be plotted, with an attribute `x.array`.
        warp_gif: If True, warp the grid by the scalar values.
        clip_gif: If True, clip the grid along the specified normal.
        clip_normal: The normal direction for clipping. Default is "y".

    Returns:
    pyvista.Plotter: The updated plotter instance.
    """
    maxval = max(plotfunc.x.array)
    maxval = 1
    grid.point_data["uh"] = plotfunc.x.array

    if warp_gif and clip_gif:
        PETSc.Sys.Print("warp and clip not possible at the same time")  # type: ignore
        plotter.clear()
        plotter.add_mesh(grid, clim=[-maxval, maxval], show_edges=True)
    elif warp_gif:
        grid_warped = grid.warp_by_scalar("uh", factor=0.2 * 1 / maxval)
        plotter.clear()
        plotter.add_mesh(grid_warped, clim=[-maxval, maxval], show_edges=True)
    elif clip_gif:
        grad_clipped = grid.clip(clip_normal, invert=True)
        plotter.clear()
        plotter.add_mesh(grad_clipped, clim=[-maxval, maxval], show_edges=True)
        plotter.add_mesh(grid, style="wireframe", clim=[-maxval, maxval], show_edges=True)
    else:
        plotter.clear()
        plotter.add_mesh(grid, clim=[-maxval, maxval], show_edges=True)

    plotter.write_frame()
    plotter.show_axes()  # type: ignore[call-arg]
    return plotter


def finalize_gif(plotter: pyvista.Plotter):
    plotter.close()


# -


# The goal is to solve the wave system using Lagrange Finite Elements.
# For this we propose the following weak formulation:
#
# $$
# \begin{cases}
# \displaystyle \int_\Omega  \partial_{t}u v + \int_\Omega  b\cdot\nabla\phi v=0 \quad  \forall v \in X^r(\Omega)\\
# \displaystyle\int_\Omega  \partial_{t} \phi \psi  - \int_\Omega   u b\cdot\nabla\psi =
# 0 \quad  \forall \psi\in X^r_0(\Omega)
# \end{cases}
# $$
#
# Here $(X^r)$ denotes the Lagrange order $(r)$, global FEM space of piecewise polynomial
# functions that are globally continuous, defined as
#
# $$
# X^r(\Omega) := \{u_h \in C (\bar{\Omega} ) : u_h |_K \in \mathbb{P}^r\ \forall K\} .
# $$
#
# The notation $(X^r_0)$ denotes the restriction of the above space to a space with zero boundary values.
#
# For the derivative in time, we use the Crank-Nicolson scheme. We define some matrices:
#
# $$
# \begin{aligned}
#     M_{ij} &= \left \langle v_j, v_i \right \rangle \\
#     N_{ij} &= \left \langle \psi_j,\psi_i \right \rangle  \\
#     E_{ij} &= \left \langle \nabla\psi_j , b v_i \right \rangle \\
#     F_{ij} &= \left \langle  v_j b,\nabla \psi_i\right \rangle
# \end{aligned}
# $$
#
# The scheme is then:
#
# $$
# \begin{aligned}
#     \begin{pmatrix}
#         M &
#         + \frac{\Delta t}{2}E \\
#         - \frac{\Delta t}{2}F &
#         N
#     \end{pmatrix}
#     \begin{pmatrix}
#         \vec u  ^{n+1}\\
#         \vec\phi^{n+1}
#     \end{pmatrix} =
#     \begin{pmatrix}
#         M \vec u^n - \frac{\Delta t}{2} E \vec\phi^n\\
#          \frac{\Delta t}{2} F\vec u^n +N\vec \phi^n
#     \end{pmatrix}
# \end{aligned}
# $$
#
#
# It turns out the continuous problem, as well as the fully discrete version is stable, and one can show,
# that solutions $(u,\phi)$ conserve the energy
#
# $$\mathcal{E} := \int_\Omega u^2 +\phi^2.$$
#
# We will now implement this problem in fenicsx.

# +
dt = 0.02  # time step
t = 0.0  # initial time
T_end = 1  # final time
num_steps = int(T_end / dt)  # number of time steps
Nx = 40  # number of elements in x and y direction
h = 1 / Nx  # mesh size
bconst = 1.0  # magnitude of the advection field

if MPI.COMM_WORLD.size == 1:
    filename_gifV = "testV.gif"
    filename_gifp = "testp.gif"
else:
    filename_gifV = f"testV_{MPI.COMM_WORLD.rank}.gif"
    filename_gifp = f"testp_{MPI.COMM_WORLD.rank}.gif"
# -

warp_gif = True

# ## Mesh, spaces, functions
# We create a {py:class}`ufl.MixedFunctionSpace` for the functions `V,p`

msh = create_unit_square(MPI.COMM_WORLD, Nx, Nx)
P1 = element("Lagrange", "triangle", 1)
XV = functionspace(msh, P1)
Xp = functionspace(msh, P1)
Z = MixedFunctionSpace(XV, Xp)
eps = 0.8
bfield = Constant(msh, (eps, np.sqrt(1 - eps**2)))
x = SpatialCoordinate(msh)
n = FacetNormal(msh)

# Dirichlet BC
# Along the top and bottom wall, we set `p=0``

facets = locate_entities_boundary(
    msh, dim=1, marker=lambda x: np.logical_or.reduce((np.isclose(x[1], 1.0), np.isclose(x[1], 0.0)))
)
dofs = fem.locate_dofs_topological(V=Xp, entity_dim=1, entities=facets)
bcs = [fem.dirichletbc(np.array(0.0), dofs=dofs, V=Xp)]

# ## Periodic BC
# Along the left and right wall, we set periodic boundary conditions

tol = 250 * np.finfo(default_scalar_type).resolution

# We will now identify the set $\{(x,y) \in \partial \Omega: x=1\}$


def periodic_boundary(x):
    return np.isclose(x[0], 1, atol=tol)


# Now we define the periodic identification of points on the left and right wall
# This identification is only valid on the periodic boundary


def periodic_relation(x):
    out_x = np.zeros_like(x)
    out_x[0] = 0  # map x=1 to x=0
    out_x[1] = x[1]  # keep y-coord as is
    return out_x


# For each of the sapces `Xp`, `XV`, we create a {py:class}`dolfinx_mpc.MultiPointConstraint`
# and use {py:meth}`create_periodic_constraint_geometrical<
# dolfinx_mpc.MultiPointConstraint.create_periodic_constraint_geometrical>`
# to create the periodic constraints

# +


mpc_p = MultiPointConstraint(Xp)
mpc_p.create_periodic_constraint_geometrical(Xp, periodic_boundary, periodic_relation, bcs)
mpc_p.finalize()

mpc_V = MultiPointConstraint(XV)
mpc_V.create_periodic_constraint_geometrical(XV, periodic_boundary, periodic_relation, bcs)
mpc_V.finalize()

# -

# We can now define the {py:class}`dolfinx.fem.Function` for the new time step values,
# as well as the trial and test functions
# ```{note}
# Note that we use the {py:attr}`mpc.function_space<dolfinx_mpc.MultiPointConstraint.function_space>`
# as input for the functions.
# ```

# +

# new time step values
V_new = fem.Function(mpc_V.function_space)
p_new = fem.Function(mpc_p.function_space)
V, p = TrialFunctions(Z)
W, q = TestFunctions(Z)

# initial conditions
V_old = Function(mpc_V.function_space)
p_old = Function(mpc_p.function_space)
V_old.interpolate(lambda x: 0.0 * x[0])
p_old.interpolate(lambda x: np.exp(-1 * (((x[0] - 0.5) / 0.15) ** 2 + ((x[1] - 0.5) / 0.15) ** 2)))

# -

# We set up the gifs using the convenience function defined above

gridV, plotterV = create_gif(V_old, filename_gifV, fps=0.1 / dt)
gridp, plotterp = create_gif(p_old, filename_gifp, fps=0.1 / dt)

# We define the weak form of the left hand side and use {py:func}`extract_blocks<ufl.extract_blocks>`
# to extract the block structure of the bilinear form.

M = inner(V, W) * dx
E = inner(grad(p), bfield * W) * dx
F = inner(grad(V), bfield * q) * dx
N = inner(p, q) * dx
a = M + dt / 2 * E + dt / 2 * F + N
a_blocked = form(extract_blocks(a))

# As the system matrix is time-independent, we use {py:func}`create_matrix_nest<dolfinx_mpc.create_matrix_nest>`
# to create the system matrix, and {py:func}`assemble_matrix_nest<dolfinx_mpc.assemble_matrix_nest>`
# to assemble the matrix once, outside the temporal loop.

A = create_matrix_nest(a_blocked, [mpc_V, mpc_p])
assemble_matrix_nest(A, a_blocked, [mpc_V, mpc_p], bcs)
A.assemble()

# We define the Krylov subspace solver using {py:class}`petsc4py.PETSc.KSP`
# and use a direct LU solver as preconditioner.

solver = PETSc.KSP().create(msh.comm)  # type: ignore
solver.setOperators(A)
solver.setType(PETSc.KSP.Type.PREONLY)  # type: ignore
solver.getPC().setType(PETSc.PC.Type.LU)  # type: ignore

# As we did for the bilinear form, we define the linear form, extract the block structure, and create the
# {py:class}`petsc4py.PETSc.Vec` that we will assemble into at each time step.

L = (
    inner(V_old, W) * dx
    - dt / 2 * inner(grad(p_old), bfield * W) * dx
    + inner(p_old, q) * dx
    - dt / 2 * inner(grad(V_old), bfield * q) * dx
)
L_blocked = form(extract_blocks(L))
b = create_vector_nest(L_blocked, [mpc_V, mpc_p])

# We perform the time dependent solve in a temporal loop.
# Note that we use {py:func}`assemble_vector_nest<dolfinx_mpc.assemble_vector_nest>`,
# {py:func}`apply_lifting<dolfinx_mpc.apply_lifting>`, and
# {py:meth}`backsubstitution<dolfinx_mpc.MultiPointConstraint.backsubstitution>`
# to handle the periodic conditions.

# +
progress_0 = 0
for i in range(num_steps):
    t += dt

    # update RHS
    assemble_vector_nest(b, L_blocked, [mpc_V, mpc_p])

    # Dirichlet BC values in RHS
    apply_lifting(b, a_blocked, bcs, [mpc_V, mpc_p])
    dolfinx.la.petsc._ghost_update(
        b,
        insert_mode=PETSc.InsertMode.ADD_VALUES,  # type: ignore
        scatter_mode=PETSc.ScatterMode.REVERSE,  # type: ignore
    )
    bcs0 = fem.bcs_by_block(fem.extract_function_spaces(L_blocked), bcs)
    fem.petsc.set_bc(b, bcs0)

    # solve
    Vp_vec = b.copy()
    solver.solve(b, Vp_vec)
    dolfinx.la.petsc._ghost_update(
        Vp_vec,
        insert_mode=PETSc.InsertMode.INSERT,  # type: ignore
        scatter_mode=PETSc.ScatterMode.FORWARD,  # type: ignore
    )  # type: ignore
    dolfinx.fem.petsc.assign(Vp_vec, [V_new, p_new])

    # update MPC slave dofs
    mpc_V.backsubstitution(V_new)
    mpc_p.backsubstitution(p_new)

    # progress
    progress = int(((i + 1) / num_steps) * 100)
    if progress >= progress_0 + 20:
        progress_0 = progress
        E_local = assemble_scalar(form(inner(V_new, V_new) * dx + inner(p_new, p_new) * dx))
        E = msh.comm.allreduce(E_local, op=MPI.SUM)
        PETSc.Sys.Print(f"|--progress: {progress}% \t time: {t:6.5f} \t {E=:.15e}:")  # type: ignore

    # Update solution at previous time step
    V_old.x.array[:] = V_new.x.array
    p_old.x.array[:] = p_new.x.array

    # gif
    plotterV = update_gif(gridV, plotterV, V_old, warp_gif, clip_gif=False)
    plotterp = update_gif(gridp, plotterp, p_old, warp_gif, clip_gif=False)

solver.destroy()
b.destroy()
Vp_vec.destroy()

# -

# We store the GIF to file

finalize_gif(plotterV)
finalize_gif(plotterp)
PETSc.Sys.Print(f"gifs saved as {filename_gifV}, {filename_gifp}")  # type: ignore


# <img src="./testV.gif" alt="gifV" width="800px">
#
# <img src="./testp.gif" alt="gifp" width="800px">