1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
# # Anisotropic wave system with periodic boundary conditions
#
# **Author** Jørgen S. Dokken and Markus Renoldner
#
# **License** MIT
#
# This demo illustrates how to use the MPC package to enforce
# periodic boundary conditions for a linear wave problem.
#
# ## Mathematical formulation
#
# We want to compute two time-dependent functions $(u,\phi)$ on the unitsquare $\Omega=(0,1)^2$, that solve
#
# $$
# \begin{cases}
# \displaystyle \partial_{t} u + b\cdot \nabla \phi=0, \\
# \partial_{t} \phi + b\cdot \nabla u=0,
# \end{cases}
# $$
#
# where the given vectorfield satisfies $(\operatorname{div} b = 0)$, that dictates the advection direction,
# and $(f,g)$ are given functions.
#
# Smooth solutions of the above system also satisfy a decoupled version of the above system,
#
# $$
# \partial_{tt} u + b\cdot\nabla (b\cdot\nabla u) = 0.
# $$
#
# This last problem resembles the linear wave equation, which explains the wavey dynamics of the solution.
#
# The aim of this tutorial is to show how to use periodic boundary conditions.
# We will choose the following setting:
#
# $$
# \begin{align*}
# \phi|_{\Gamma_D} &=0 , \\
# \phi|_{\Gamma_l} &= \phi|_{\Gamma_r}, \\
# u|_{\Gamma_l} &= |_{\Gamma_r},
# \end{align*}
# $$
#
# where we set $(\partial\Omega = \Gamma_D\cup \Gamma_l \cup \Gamma_r)$, with
#
# $$
# \begin{align*}
# \Gamma_D &:=\{(x,y)\in \bar{\Omega}: y=0 \text{ or }y=1\},\quad&&\text{i.e. the bottom and top wall}\\
# \Gamma_l &:=\{(x,y)\in \bar{\Omega}: x=0\},\quad&&\text{i.e. the left wall}\\
# \Gamma_r &:=\{(x,y)\in \bar{\Omega}: x=1\},\quad&&\text{i.e. the right wall}.
# \end{align*}
# $$
#
# We start by the various modules required for this demo
# +
import typing
from mpi4py import MPI
from petsc4py import PETSc
import dolfinx.fem as fem
import dolfinx.la.petsc
import numpy as np
import pyvista
from basix.ufl import element
from dolfinx import default_scalar_type, plot
from dolfinx.fem import Constant, Function, assemble_scalar, form, functionspace
from dolfinx.mesh import create_unit_square, locate_entities_boundary
from ufl import (
FacetNormal,
MixedFunctionSpace,
SpatialCoordinate,
TestFunctions,
TrialFunctions,
dx,
extract_blocks,
grad,
inner,
)
from dolfinx_mpc import (
MultiPointConstraint,
apply_lifting,
assemble_matrix_nest,
assemble_vector_nest,
create_matrix_nest,
create_vector_nest,
)
# -
# Next, we create some convenience functions to create a gif from a given function
# +
def create_gif(
plotfunc: dolfinx.fem.Function, filename: str, fps: float
) -> tuple[pyvista.UnstructuredGrid, pyvista.Plotter]:
"""
Create a GIF animation from a given plotting function and function space.
Args:
plotfunc: The plotting function that generates the data to be visualized.
filename: The name of the output GIF file.
fps: Frames per second for the GIF animation.
Returns:
tuple: A tuple containing the grid and plotter used for creating the GIF.
Example:
.. code-block:: python
grid, plotter = create_gif(plotfunc, "output.gif", 10)
for i in range(N):
plotter = update_gif(...)
finalize_gif(...)
"""
grid = pyvista.UnstructuredGrid(*plot.vtk_mesh(plotfunc.function_space))
plotter = pyvista.Plotter(off_screen=True)
plotter.open_gif(filename, fps=fps)
plotter.show_axes() # type: ignore[call-arg]
grid.point_data["uh1"] = plotfunc.x.array
return grid, plotter
def update_gif(
grid: pyvista.UnstructuredGrid,
plotter: pyvista.Plotter,
plotfunc: dolfinx.fem.Function,
warp_gif: bool,
clip_gif: bool,
clip_normal: typing.Literal["x", "y", "z", "-x", "-y", "-z"] = "y",
):
"""
Update the plotter with the given grid and plot function, and optionally warp or clip the grid.
Args:
grid: The grid to be plotted.
plotter: The plotter instance used for plotting.
plotfunc: An object containing the data to be plotted, with an attribute `x.array`.
warp_gif: If True, warp the grid by the scalar values.
clip_gif: If True, clip the grid along the specified normal.
clip_normal: The normal direction for clipping. Default is "y".
Returns:
pyvista.Plotter: The updated plotter instance.
"""
maxval = max(plotfunc.x.array)
maxval = 1
grid.point_data["uh"] = plotfunc.x.array
if warp_gif and clip_gif:
PETSc.Sys.Print("warp and clip not possible at the same time") # type: ignore
plotter.clear()
plotter.add_mesh(grid, clim=[-maxval, maxval], show_edges=True)
elif warp_gif:
grid_warped = grid.warp_by_scalar("uh", factor=0.2 * 1 / maxval)
plotter.clear()
plotter.add_mesh(grid_warped, clim=[-maxval, maxval], show_edges=True)
elif clip_gif:
grad_clipped = grid.clip(clip_normal, invert=True)
plotter.clear()
plotter.add_mesh(grad_clipped, clim=[-maxval, maxval], show_edges=True)
plotter.add_mesh(grid, style="wireframe", clim=[-maxval, maxval], show_edges=True)
else:
plotter.clear()
plotter.add_mesh(grid, clim=[-maxval, maxval], show_edges=True)
plotter.write_frame()
plotter.show_axes() # type: ignore[call-arg]
return plotter
def finalize_gif(plotter: pyvista.Plotter):
plotter.close()
# -
# The goal is to solve the wave system using Lagrange Finite Elements.
# For this we propose the following weak formulation:
#
# $$
# \begin{cases}
# \displaystyle \int_\Omega \partial_{t}u v + \int_\Omega b\cdot\nabla\phi v=0 \quad \forall v \in X^r(\Omega)\\
# \displaystyle\int_\Omega \partial_{t} \phi \psi - \int_\Omega u b\cdot\nabla\psi =
# 0 \quad \forall \psi\in X^r_0(\Omega)
# \end{cases}
# $$
#
# Here $(X^r)$ denotes the Lagrange order $(r)$, global FEM space of piecewise polynomial
# functions that are globally continuous, defined as
#
# $$
# X^r(\Omega) := \{u_h \in C (\bar{\Omega} ) : u_h |_K \in \mathbb{P}^r\ \forall K\} .
# $$
#
# The notation $(X^r_0)$ denotes the restriction of the above space to a space with zero boundary values.
#
# For the derivative in time, we use the Crank-Nicolson scheme. We define some matrices:
#
# $$
# \begin{aligned}
# M_{ij} &= \left \langle v_j, v_i \right \rangle \\
# N_{ij} &= \left \langle \psi_j,\psi_i \right \rangle \\
# E_{ij} &= \left \langle \nabla\psi_j , b v_i \right \rangle \\
# F_{ij} &= \left \langle v_j b,\nabla \psi_i\right \rangle
# \end{aligned}
# $$
#
# The scheme is then:
#
# $$
# \begin{aligned}
# \begin{pmatrix}
# M &
# + \frac{\Delta t}{2}E \\
# - \frac{\Delta t}{2}F &
# N
# \end{pmatrix}
# \begin{pmatrix}
# \vec u ^{n+1}\\
# \vec\phi^{n+1}
# \end{pmatrix} =
# \begin{pmatrix}
# M \vec u^n - \frac{\Delta t}{2} E \vec\phi^n\\
# \frac{\Delta t}{2} F\vec u^n +N\vec \phi^n
# \end{pmatrix}
# \end{aligned}
# $$
#
#
# It turns out the continuous problem, as well as the fully discrete version is stable, and one can show,
# that solutions $(u,\phi)$ conserve the energy
#
# $$\mathcal{E} := \int_\Omega u^2 +\phi^2.$$
#
# We will now implement this problem in fenicsx.
# +
dt = 0.02 # time step
t = 0.0 # initial time
T_end = 1 # final time
num_steps = int(T_end / dt) # number of time steps
Nx = 40 # number of elements in x and y direction
h = 1 / Nx # mesh size
bconst = 1.0 # magnitude of the advection field
if MPI.COMM_WORLD.size == 1:
filename_gifV = "testV.gif"
filename_gifp = "testp.gif"
else:
filename_gifV = f"testV_{MPI.COMM_WORLD.rank}.gif"
filename_gifp = f"testp_{MPI.COMM_WORLD.rank}.gif"
# -
warp_gif = True
# ## Mesh, spaces, functions
# We create a {py:class}`ufl.MixedFunctionSpace` for the functions `V,p`
msh = create_unit_square(MPI.COMM_WORLD, Nx, Nx)
P1 = element("Lagrange", "triangle", 1)
XV = functionspace(msh, P1)
Xp = functionspace(msh, P1)
Z = MixedFunctionSpace(XV, Xp)
eps = 0.8
bfield = Constant(msh, (eps, np.sqrt(1 - eps**2)))
x = SpatialCoordinate(msh)
n = FacetNormal(msh)
# Dirichlet BC
# Along the top and bottom wall, we set `p=0``
facets = locate_entities_boundary(
msh, dim=1, marker=lambda x: np.logical_or.reduce((np.isclose(x[1], 1.0), np.isclose(x[1], 0.0)))
)
dofs = fem.locate_dofs_topological(V=Xp, entity_dim=1, entities=facets)
bcs = [fem.dirichletbc(np.array(0.0), dofs=dofs, V=Xp)]
# ## Periodic BC
# Along the left and right wall, we set periodic boundary conditions
tol = 250 * np.finfo(default_scalar_type).resolution
# We will now identify the set $\{(x,y) \in \partial \Omega: x=1\}$
def periodic_boundary(x):
return np.isclose(x[0], 1, atol=tol)
# Now we define the periodic identification of points on the left and right wall
# This identification is only valid on the periodic boundary
def periodic_relation(x):
out_x = np.zeros_like(x)
out_x[0] = 0 # map x=1 to x=0
out_x[1] = x[1] # keep y-coord as is
return out_x
# For each of the sapces `Xp`, `XV`, we create a {py:class}`dolfinx_mpc.MultiPointConstraint`
# and use {py:meth}`create_periodic_constraint_geometrical<
# dolfinx_mpc.MultiPointConstraint.create_periodic_constraint_geometrical>`
# to create the periodic constraints
# +
mpc_p = MultiPointConstraint(Xp)
mpc_p.create_periodic_constraint_geometrical(Xp, periodic_boundary, periodic_relation, bcs)
mpc_p.finalize()
mpc_V = MultiPointConstraint(XV)
mpc_V.create_periodic_constraint_geometrical(XV, periodic_boundary, periodic_relation, bcs)
mpc_V.finalize()
# -
# We can now define the {py:class}`dolfinx.fem.Function` for the new time step values,
# as well as the trial and test functions
# ```{note}
# Note that we use the {py:attr}`mpc.function_space<dolfinx_mpc.MultiPointConstraint.function_space>`
# as input for the functions.
# ```
# +
# new time step values
V_new = fem.Function(mpc_V.function_space)
p_new = fem.Function(mpc_p.function_space)
V, p = TrialFunctions(Z)
W, q = TestFunctions(Z)
# initial conditions
V_old = Function(mpc_V.function_space)
p_old = Function(mpc_p.function_space)
V_old.interpolate(lambda x: 0.0 * x[0])
p_old.interpolate(lambda x: np.exp(-1 * (((x[0] - 0.5) / 0.15) ** 2 + ((x[1] - 0.5) / 0.15) ** 2)))
# -
# We set up the gifs using the convenience function defined above
gridV, plotterV = create_gif(V_old, filename_gifV, fps=0.1 / dt)
gridp, plotterp = create_gif(p_old, filename_gifp, fps=0.1 / dt)
# We define the weak form of the left hand side and use {py:func}`extract_blocks<ufl.extract_blocks>`
# to extract the block structure of the bilinear form.
M = inner(V, W) * dx
E = inner(grad(p), bfield * W) * dx
F = inner(grad(V), bfield * q) * dx
N = inner(p, q) * dx
a = M + dt / 2 * E + dt / 2 * F + N
a_blocked = form(extract_blocks(a))
# As the system matrix is time-independent, we use {py:func}`create_matrix_nest<dolfinx_mpc.create_matrix_nest>`
# to create the system matrix, and {py:func}`assemble_matrix_nest<dolfinx_mpc.assemble_matrix_nest>`
# to assemble the matrix once, outside the temporal loop.
A = create_matrix_nest(a_blocked, [mpc_V, mpc_p])
assemble_matrix_nest(A, a_blocked, [mpc_V, mpc_p], bcs)
A.assemble()
# We define the Krylov subspace solver using {py:class}`petsc4py.PETSc.KSP`
# and use a direct LU solver as preconditioner.
solver = PETSc.KSP().create(msh.comm) # type: ignore
solver.setOperators(A)
solver.setType(PETSc.KSP.Type.PREONLY) # type: ignore
solver.getPC().setType(PETSc.PC.Type.LU) # type: ignore
# As we did for the bilinear form, we define the linear form, extract the block structure, and create the
# {py:class}`petsc4py.PETSc.Vec` that we will assemble into at each time step.
L = (
inner(V_old, W) * dx
- dt / 2 * inner(grad(p_old), bfield * W) * dx
+ inner(p_old, q) * dx
- dt / 2 * inner(grad(V_old), bfield * q) * dx
)
L_blocked = form(extract_blocks(L))
b = create_vector_nest(L_blocked, [mpc_V, mpc_p])
# We perform the time dependent solve in a temporal loop.
# Note that we use {py:func}`assemble_vector_nest<dolfinx_mpc.assemble_vector_nest>`,
# {py:func}`apply_lifting<dolfinx_mpc.apply_lifting>`, and
# {py:meth}`backsubstitution<dolfinx_mpc.MultiPointConstraint.backsubstitution>`
# to handle the periodic conditions.
# +
progress_0 = 0
for i in range(num_steps):
t += dt
# update RHS
assemble_vector_nest(b, L_blocked, [mpc_V, mpc_p])
# Dirichlet BC values in RHS
apply_lifting(b, a_blocked, bcs, [mpc_V, mpc_p])
dolfinx.la.petsc._ghost_update(
b,
insert_mode=PETSc.InsertMode.ADD_VALUES, # type: ignore
scatter_mode=PETSc.ScatterMode.REVERSE, # type: ignore
)
bcs0 = fem.bcs_by_block(fem.extract_function_spaces(L_blocked), bcs)
fem.petsc.set_bc(b, bcs0)
# solve
Vp_vec = b.copy()
solver.solve(b, Vp_vec)
dolfinx.la.petsc._ghost_update(
Vp_vec,
insert_mode=PETSc.InsertMode.INSERT, # type: ignore
scatter_mode=PETSc.ScatterMode.FORWARD, # type: ignore
) # type: ignore
dolfinx.fem.petsc.assign(Vp_vec, [V_new, p_new])
# update MPC slave dofs
mpc_V.backsubstitution(V_new)
mpc_p.backsubstitution(p_new)
# progress
progress = int(((i + 1) / num_steps) * 100)
if progress >= progress_0 + 20:
progress_0 = progress
E_local = assemble_scalar(form(inner(V_new, V_new) * dx + inner(p_new, p_new) * dx))
E = msh.comm.allreduce(E_local, op=MPI.SUM)
PETSc.Sys.Print(f"|--progress: {progress}% \t time: {t:6.5f} \t {E=:.15e}:") # type: ignore
# Update solution at previous time step
V_old.x.array[:] = V_new.x.array
p_old.x.array[:] = p_new.x.array
# gif
plotterV = update_gif(gridV, plotterV, V_old, warp_gif, clip_gif=False)
plotterp = update_gif(gridp, plotterp, p_old, warp_gif, clip_gif=False)
solver.destroy()
b.destroy()
Vp_vec.destroy()
# -
# We store the GIF to file
finalize_gif(plotterV)
finalize_gif(plotterp)
PETSc.Sys.Print(f"gifs saved as {filename_gifV}, {filename_gifp}") # type: ignore
# <img src="./testV.gif" alt="gifV" width="800px">
#
# <img src="./testp.gif" alt="gifp" width="800px">
|