1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
# # Stokes flow with slip conditions
# **Author** Jørgen S. Dokken
#
# **License** MIT
#
# This demo illustrates how to apply a slip condition on an
# interface not aligned with the coordiante axis.
#
# ## Mathematical formulation
#
# We start with the general, mathematical formulation of this problem, similar
# to the formulation presented in {cite}`Knobloch2000`.
#
# Find the fluid velocity and pressure, $(\mathbf{u}, p)\in V(\Omega) \times Q(\Omega)$ such that
#
# $$
# \begin{align*}
# -\nabla \cdot \sigma(\mathbf{u}, p, \mu) &= \mathbf{f}&&\text{in }\Omega,\\
# \nabla \cdot \mathbf{u} &= 0 &&\text{in }\Omega,\\
# \mathbf{u} &= \mathbf{u}_{in}&&\text{on }\partial\Omega_D,\\
# \mathbf{u}\cdot\mathbf{n}&= \mathbf{0}&&\text{on } \partial\Omega_S,\\
# (\mathbb{I}-\mathbf{n}\otimes\mathbf{n})2\mu\epsilon(\mathbf{u}) &= \mathbf{g}_\tau&&\text{on }\partial\Omega_S,\\
# \sigma \cdot \mathbf{n} &= \mathbf{0}&&\text{on } \partial \Omega_N,
# \end{align*}
# $$
# where
#
# $$
# \begin{align*}
# \sigma(\mathbf{u}, p, \mu)&=2\mu \epsilon(\mathbf{u}) - p\mathbb{I}\\
# \epsilon(\mathbf{u}) &= \frac{1}{2}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T\right)
# \end{align*}
# $$
#
# is the stress-tensor for incompressible fluid.
# We have denoted the inlet boundary as $\partial\Omega_D$, the slip boundary
# as $\partial\Omega_S$ and the outlet as $\partial\Omega_N$.
# We start by the various modules required for this demo
# +
from __future__ import annotations
from pathlib import Path
from typing import Union
from mpi4py import MPI
import basix.ufl
import gmsh
import numpy as np
from dolfinx import common, default_real_type, default_scalar_type, fem, io
from dolfinx.io import gmsh as gmshio
from numpy.typing import NDArray
from ufl import (
FacetNormal,
Identity,
Measure,
MixedFunctionSpace,
TestFunctions,
TrialFunctions,
div,
dot,
dx,
extract_blocks,
grad,
inner,
outer,
sym,
)
from ufl.core.expr import Expr
import dolfinx_mpc.utils
from dolfinx_mpc import LinearProblem, MultiPointConstraint
# -
# ## Mesh generation
#
# Next we create the computational domain, a channel titled with respect to the coordinate axis.
# We use GMSH and the DOLFINx GMSH-IO to convert the GMSH model into a DOLFINx mesh
# We mark the walls ($\partial\Omega_S$) where we want to impose slip conditions with `1`,
# the outlet ($\partial\Omega_N$) with `2` and the inlet ($\partial\Omega_D$) with `3`.
# +
def create_mesh_gmsh(
L: int = 2,
H: int = 1,
res: float = 0.1,
theta: float = np.pi / 5,
wall_marker: int = 1,
outlet_marker: int = 2,
inlet_marker: int = 3,
):
"""
Create a channel of length L, height H, rotated theta degrees
around origin, with facet markers for inlet, outlet and walls.
Parameters
----------
L
The length of the channel
H
Width of the channel
res
Mesh resolution (uniform)
theta
Rotation angle
wall_marker
Integer used to mark the walls of the channel
outlet_marker
Integer used to mark the outlet of the channel
inlet_marker
Integer used to mark the inlet of the channel
"""
gmsh.initialize()
if MPI.COMM_WORLD.rank == 0:
gmsh.model.add("Square duct")
# Create rectangular channel
channel = gmsh.model.occ.addRectangle(0, 0, 0, L, H)
gmsh.model.occ.synchronize()
# Find entity markers before rotation
surfaces = gmsh.model.occ.getEntities(dim=1)
walls = []
inlets = []
outlets = []
for surface in surfaces:
com = gmsh.model.occ.getCenterOfMass(surface[0], surface[1])
if np.allclose(com, [0, H / 2, 0]):
inlets.append(surface[1])
elif np.allclose(com, [L, H / 2, 0]):
outlets.append(surface[1])
elif np.isclose(com[1], 0) or np.isclose(com[1], H):
walls.append(surface[1])
# Rotate channel theta degrees in the xy-plane
gmsh.model.occ.rotate([(2, channel)], 0, 0, 0, 0, 0, 1, theta)
gmsh.model.occ.synchronize()
# Add physical markers
gmsh.model.addPhysicalGroup(2, [channel], 1)
gmsh.model.setPhysicalName(2, 1, "Fluid volume")
gmsh.model.addPhysicalGroup(1, walls, wall_marker)
gmsh.model.setPhysicalName(1, wall_marker, "Walls")
gmsh.model.addPhysicalGroup(1, inlets, inlet_marker)
gmsh.model.setPhysicalName(1, inlet_marker, "Fluid inlet")
gmsh.model.addPhysicalGroup(1, outlets, outlet_marker)
gmsh.model.setPhysicalName(1, outlet_marker, "Fluid outlet")
# Set uniform mesh size
gmsh.option.setNumber("Mesh.CharacteristicLengthMin", res)
gmsh.option.setNumber("Mesh.CharacteristicLengthMax", res)
# Generate mesh
gmsh.model.mesh.generate(2)
# Convert gmsh model to DOLFINx Mesh and meshtags
mesh_data = gmshio.model_to_mesh(gmsh.model, MPI.COMM_WORLD, 0, gdim=2)
gmsh.finalize()
assert mesh_data.facet_tags is not None
return mesh_data.mesh, mesh_data.facet_tags
wall_marker = 1
outlet_marker = 2
inlet_marker = 3
mesh, mt = create_mesh_gmsh(res=0.1, wall_marker=wall_marker, outlet_marker=outlet_marker, inlet_marker=inlet_marker)
# -
# ## Creation of the mixed function space
# The next step is the create the function spaces for the fluid velocit and pressure.
# We will use a mixed-formulation, and we use {py:mod}`basix.ufl` to create the Taylor-Hood finite element pair
P2 = basix.ufl.element("Lagrange", mesh.topology.cell_name(), 2, shape=(mesh.geometry.dim,), dtype=default_real_type)
P1 = basix.ufl.element("Lagrange", mesh.topology.cell_name(), 1, dtype=default_real_type)
# We use the class {py:class}`ufl.MixedFunctionSpace` to create the mixed space, as opposed to using
# {py:func}`basix.ufl.mixed_element` as it makes it easier to specify multi-point constraints for the velocity space.
V = fem.functionspace(mesh, P2)
Q = fem.functionspace(mesh, P1)
W = MixedFunctionSpace(V, Q)
# ## Boundary conditions
# Next we want to prescribe an inflow condition on a set of facets, those marked by 3 in GMSH
# To do so, we start by creating a function in the **collapsed** subspace of V, and create the
# expression of choice for the boundary condition.
# We use a Python-function for this, that takes in an array of shape `(num_points, 3)` and
# returns the function values as an `(num_points, 2)` array.
# Note that we therefore can use vectorized Numpy operations to compute the inlet values for a sequence of points
# with a single function call
inlet_velocity = fem.Function(V)
def inlet_velocity_expression(
x: NDArray[Union[np.float32, np.float64]],
) -> NDArray[Union[np.float32, np.float64, np.complex64, np.complex128]]:
return np.stack(
(
np.sin(np.pi * np.sqrt(x[0] ** 2 + x[1] ** 2)),
5 * x[1] * np.sin(np.pi * np.sqrt(x[0] ** 2 + x[1] ** 2)),
)
).astype(default_scalar_type)
inlet_velocity.interpolate(inlet_velocity_expression)
inlet_velocity.x.scatter_forward()
# Next, we have to create the Dirichlet boundary condition. As the function is in the collapsed space,
# we send in the function space `V` of the velocity
dofs = fem.locate_dofs_topological(V, 1, mt.find(inlet_marker))
bc1 = fem.dirichletbc(inlet_velocity, dofs)
bcs = [bc1]
# Next, we want to create the slip conditions at the side walls of the channel.
# To do so, we compute an approximation of the normal at all the degrees of freedom that
# are associated with the facets marked with `wall_marker`, either by being on one of the vertices of a
# facet marked with `wall_marker`, or on the facet itself (for instance at a midpoint).
# If a dof is associated with a vertex that is connected to mutliple facets marked with `1`,
# we define the normal as the average between the normals at the vertex viewed from each facet.
# We use {py:func}`create_normal_approixmation<dolfinx_mpc.utils.create_normal_approximation>`
# to approximate the facet at each degree of freedom by the average at the neighbouring facets.
n = dolfinx_mpc.utils.create_normal_approximation(V, mt, wall_marker)
# Next, we can create the multipoint-constraint, enforcing that $\mathbf{u}\cdot\mathbf{n}=0$,
# except where we have already enforced a Dirichlet boundary condition.
# We start by initializing the class {py:class}`dolfinx_mpc.MultiPointConstraint`, then we
# call {py:meth}`create_slip_constraint<dolfinx_mpc.MultiPointConstraint.create_slip_constraint>`.
# This method takes in the function space, the
# {py:class}`dolfinx.mesh.MeshTags` object with the facets, the markers of the facets to constrain,
# the normal vector and the boundary conditions.
# Once we have added all constraints to the `mpc_u` object, we call
# {py:meth}`finalize<dolfinx_mpc.MultiPointConstraint.finalize>`, which sets up a constrained
# function space with a smaller set of degrees of freedom.
with common.Timer("~Stokes: Create slip constraint"):
mpc_u = MultiPointConstraint(V)
mpc_u.create_slip_constraint(V, (mt, wall_marker), n, bcs=bcs)
mpc_u.finalize()
# As we will not have an multipoint constraint for the pressure, we create an empty constraint.
mpc_p = MultiPointConstraint(Q)
mpc_p.finalize()
# ## Variational formulation
# We start by creating some convenience functions, including the tangential projection of a vector,
# the symmetric gradient and traction.
# +
def tangential_proj(u: Expr, n: Expr):
"""
See for instance [Knobloch, 2000](https://doi.org/10.1023/A:1022235512626).
"""
return (Identity(u.ufl_shape[0]) - outer(n, n)) * u
def epsilon(u: Expr):
return sym(grad(u))
def sigma(u: Expr, p: Expr, mu: Expr):
return 2 * mu * epsilon(u) - p * Identity(u.ufl_shape[0])
# -
# Next, we define the classical terms of the bilinear form `a` and linear form `L`.
# We note that we use the symmetric formulation after integration by parts.
mu = fem.Constant(mesh, default_scalar_type(1.0))
f = fem.Constant(mesh, default_scalar_type((0, 0)))
(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)
a = (2 * mu * inner(epsilon(u), epsilon(v)) - inner(p, div(v)) - inner(div(u), q)) * dx
L = inner(f, v) * dx + inner(fem.Constant(mesh, default_scalar_type(0.0)), q) * dx
# We could prescibe some shear stress at the slip boundaries. However, in this demo, we set it to `0`,
# but include it in the variational formulation. We add the appropriate terms due to the slip condition,
# as explained in {cite}`sime2020automaticweakimpositionfree`.
# +
n = FacetNormal(mesh)
g_tau = tangential_proj(fem.Constant(mesh, default_scalar_type(((0, 0), (0, 0)))) * n, n)
ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=wall_marker)
a -= inner(outer(n, n) * dot(sigma(u, p, mu), n), v) * ds
L += inner(g_tau, v) * ds
# -
# ## Solve the variational problem
# We use the MUMPS solver provided through the {py:class}`dolfinx_mpc.LinearProblem`
# interface to solve the variational problem.
#
# ````{admonition} Usage of extract blocks
# As we have used {py:class}`ufl.MixedFunctionSpace` to create the monolitic variational formulation,
# we split it into the appropriate blocks prior to passing them into
# {py:class}`LinearProblem<dolfinx_mpc.LinearProblem>` using
# {py:func}`ufl.extract_blocks`
# ````
# We pass in the two multi-point constraints in the order the spaces are placed in `W`.
tol = np.finfo(mesh.geometry.x.dtype).eps * 1000
petsc_options = {
"ksp_type": "preonly",
"pc_type": "lu",
"pc_factor_mat_solver_type": "mumps",
"ksp_error_if_not_converged": True,
"ksp_monitor": None,
}
problem = LinearProblem(extract_blocks(a), extract_blocks(L), [mpc_u, mpc_p], bcs=bcs, petsc_options=petsc_options)
uh, ph = problem.solve()
# ## Visualization
# We store the solution to the `VTX` file format, which can be opend with the
# `ADIOS2VTXReader` in Paraview
# +
uh.name = "u"
ph.name = "p"
outdir = Path("results").absolute()
outdir.mkdir(exist_ok=True, parents=True)
with io.VTXWriter(mesh.comm, outdir / "demo_stokes_u.bp", uh, engine="BP4") as vtx:
vtx.write(0.0)
with io.VTXWriter(mesh.comm, outdir / "demo_stokes_p.bp", ph, engine="BP4") as vtx:
vtx.write(0.0)
# -
# ```{bibliography}
# :filter: cited and ({"python/demos/demo_stokes"} >= docnames)
# ```
|