File: test_nonlinear_assembly.py

package info (click to toggle)
dolfinx-mpc 0.10.0-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,268 kB
  • sloc: python: 7,901; cpp: 5,525; makefile: 69; sh: 4
file content (166 lines) | stat: -rw-r--r-- 6,254 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (C) 2022-2025 Nathan Sime, Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

from mpi4py import MPI

import basix
import dolfinx
import numpy as np
import pytest
import ufl

import dolfinx_mpc


@pytest.mark.skipif(
    np.issubdtype(dolfinx.default_scalar_type, np.complexfloating),
    reason="This test does not work in complex mode.",
)
@pytest.mark.parametrize("poly_order", [1, 2, 3])
def test_nonlinear_poisson(poly_order):
    # Solve a standard Poisson problem with known solution which has
    # rotational symmetry of pi/2 at (x, y) = (0.5, 0.5). Therefore we may
    # impose MPCs on those DoFs which lie on the symmetry plane(s) and test
    # our numerical approximation. We do not impose any constraints at the
    # rotationally degenerate point (x, y) = (0.5, 0.5).

    N_vals = np.array([4, 8, 10], dtype=np.int32)
    l2_error = np.zeros_like(N_vals, dtype=np.double)
    hs = 1.0 / N_vals
    for run_no, N in enumerate(N_vals):
        mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, N, N)
        V = dolfinx.fem.functionspace(mesh, ("Lagrange", poly_order))
        u_bc = dolfinx.fem.Function(V)
        u_bc.x.array[:] = 0.0

        mesh.topology.create_connectivity(mesh.topology.dim - 1, mesh.topology.dim)
        facets = dolfinx.mesh.exterior_facet_indices(mesh.topology)
        topological_dofs = dolfinx.fem.locate_dofs_topological(V, 1, facets)
        zero = np.array(0, dtype=dolfinx.default_scalar_type)
        bc = dolfinx.fem.dirichletbc(zero, topological_dofs, V)
        bcs = [bc]

        # -- Impose the pi/2 rotational symmetry of the solution as a constraint,
        # -- except at the centre DoF
        def periodic_boundary(x):
            eps = 1000 * np.finfo(x.dtype).resolution
            return np.isclose(x[0], 0.5, atol=eps) & ((x[1] < 0.5 - eps) | (x[1] > 0.5 + eps))

        def periodic_relation(x):
            out_x = np.zeros_like(x)
            out_x[0] = x[1]
            out_x[1] = x[0]
            out_x[2] = x[2]
            return out_x

        mpc = dolfinx_mpc.MultiPointConstraint(V)
        mpc.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_relation, bcs)
        mpc.finalize()

        # Define variational problem
        V_mpc = mpc.function_space

        # NOTE: The unknown function should always live in the MPC space,
        # but to be compatible with the dirichlet bc the arguments (test and trial function)
        # has to live in the original space V
        u = dolfinx.fem.Function(V_mpc)
        v = ufl.TestFunction(V)
        x = ufl.SpatialCoordinate(mesh)

        u_soln = ufl.sin(ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1])
        f = -ufl.div((1 + u_soln**2) * ufl.grad(u_soln))

        F = ufl.inner((1 + u**2) * ufl.grad(u), ufl.grad(v)) * ufl.dx - ufl.inner(f, v) * ufl.dx
        J = ufl.derivative(F, u, ufl.TrialFunction(V))

        # Sanity check that the MPC class has some constraints to impose
        num_slaves_global = mesh.comm.allreduce(len(mpc.slaves), op=MPI.SUM)
        num_masters_global = mesh.comm.allreduce(len(mpc.masters.array), op=MPI.SUM)

        assert num_slaves_global > 0
        assert num_masters_global == num_slaves_global
        tol = np.finfo(u.x.array.dtype).resolution
        petsc_options = {
            "snes_type": "newtonls",
            "ksp_type": "preonly",
            "pc_type": "lu",
            "pc_factor_mat_solver_type": "mumps",
            "snes_atol": tol,
            "snes_rtol": tol,
            "snes_linesearch_type": "none",
            "ksp_error_if_not_converged": True,
            "snes_error_if_not_converged": True,
            "snes_monitor": None,
        }
        problem = dolfinx_mpc.NonlinearProblem(F, u, mpc=mpc, bcs=bcs, J=J, petsc_options=petsc_options)
        # solver = NewtonSolverMPC(mesh.comm, problem, mpc)

        # Ensure the solver works with nonzero initial guess
        u.interpolate(lambda x: x[0] ** 2 * x[1] ** 2)
        _, converged, num_iterations = problem.solve()

        print(f"Converged: {converged}, iterations: {num_iterations}")
        l2_error_local = dolfinx.fem.assemble_scalar(dolfinx.fem.form((u - u_soln) ** 2 * ufl.dx))
        l2_error_global = mesh.comm.allreduce(l2_error_local, op=MPI.SUM)

        l2_error[run_no] = l2_error_global**0.5

    rates = np.log(l2_error[:-1] / l2_error[1:]) / np.log(hs[:-1] / hs[1:])

    assert np.all(rates > poly_order + 0.9)


@pytest.mark.parametrize("tensor_order", [0, 1, 2])
@pytest.mark.parametrize("poly_order", [1, 2, 3])
def test_homogenize(tensor_order, poly_order):
    mesh = dolfinx.mesh.create_unit_square(MPI.COMM_WORLD, 8, 8)
    if tensor_order == 0:
        shape = ()
    elif tensor_order == 1:
        shape = (mesh.geometry.dim,)
    elif tensor_order == 2:
        shape = (mesh.geometry.dim, mesh.geometry.dim)
    else:
        pytest.xfail("Unknown tensor order")

    cellname = mesh.ufl_cell().cellname()
    el = basix.ufl.element(basix.ElementFamily.P, cellname, poly_order, shape=shape, dtype=mesh.geometry.x.dtype)

    V = dolfinx.fem.functionspace(mesh, el)

    def periodic_boundary(x):
        return np.isclose(x[0], 0.0)

    def periodic_relation(x):
        out_x = np.zeros(x.shape)
        out_x[0] = 1.0 - x[0]
        out_x[1] = x[1]
        out_x[2] = x[2]
        return out_x

    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_relation, [])
    mpc.finalize()

    # Sanity check that the MPC class has some constraints to impose
    num_slaves_global = mesh.comm.allreduce(len(mpc.slaves), op=MPI.SUM)
    assert num_slaves_global > 0

    u = dolfinx.fem.Function(V)
    u.x.petsc_vec.set(1.0)
    assert np.isclose(u.x.petsc_vec.min()[1], u.x.petsc_vec.max()[1])
    assert np.isclose(u.x.petsc_vec.array_r[0], 1.0)

    mpc.homogenize(u)

    with u.x.petsc_vec.localForm() as u_:
        for i in range(V.dofmap.index_map.size_local * V.dofmap.index_map_bs):
            if i in mpc.slaves:
                assert np.isclose(u_.array_r[i], 0.0)
            else:
                assert np.isclose(u_.array_r[i], 1.0)
    u.x.petsc_vec.destroy()