1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
# Copyright (C) 2026 Stein K.F. Stoter
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
from __future__ import annotations
from mpi4py import MPI
from petsc4py import PETSc
import numpy as np
import pytest
import ufl
from basix.ufl import element
from dolfinx import default_real_type, default_scalar_type, fem, la, mesh
from dolfinx.mesh import CellType, create_unit_cube
import dolfinx_mpc
@pytest.mark.parametrize("cell_type", [CellType.tetrahedron, CellType.hexahedron])
@pytest.mark.parametrize("els", [2, 4, 8])
@pytest.mark.parametrize("order", [2, 3])
def test_stokes_channelflow(cell_type, els, order):
"""Test 3D Stokes channel flow with periodic BCs and nested assembly and Taylor-Hood elements.
The analytical solution for Poiseuille flow between parallel plates is:
u_x = (dp/dx) * (1/(2*mu)) * y * (H - y)
where H is the channel height, dp/dx is the pressure gradient enforced as a body force, mu is viscosity.
"""
# Cube mesh
rtype = default_real_type
domain = create_unit_cube(MPI.COMM_WORLD, els, els, els, cell_type=cell_type, dtype=rtype)
# Function spaces: Taylor-Hood
V = fem.functionspace(domain, element("Lagrange", domain.basix_cell(), order, shape=(3,), dtype=rtype))
Q = fem.functionspace(domain, element("Lagrange", domain.basix_cell(), order - 1, dtype=rtype))
# Wall BCs (top/bottom y={0,1})
wall_facets = mesh.locate_entities_boundary(
domain, 2, lambda x: np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1))
)
wall_dofs = fem.locate_dofs_topological(V, 2, wall_facets)
bc = fem.dirichletbc(np.zeros(3, dtype=default_scalar_type), wall_dofs, V)
# Periodicity definition (x and z directions)
def periodic_boundary(x):
return np.logical_or(np.isclose(x[0], 1), np.isclose(x[2], 1))
def periodic_map(x):
out = x.copy()
out[0][np.isclose(x[0], 1).nonzero()] -= 1
out[2][np.isclose(x[2], 1).nonzero()] -= 1
return out
# Create MPCs for velocity and pressure
mpc_u = dolfinx_mpc.MultiPointConstraint(V)
mpc_u.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_map, [bc])
mpc_u.finalize()
mpc_p = dolfinx_mpc.MultiPointConstraint(Q)
mpc_p.create_periodic_constraint_geometrical(Q, periodic_boundary, periodic_map, [])
mpc_p.finalize()
# Stokes weak form
u = ufl.TrialFunction(V)
p = ufl.TrialFunction(Q)
v = ufl.TestFunction(V)
q = ufl.TestFunction(Q)
# Viscosity and forcing
mu = fem.Constant(domain, default_scalar_type(1.0))
dp_dx = fem.Constant(domain, default_scalar_type(1.0)) # Pressure gradient in x-direction
f = ufl.as_vector([dp_dx, 0.0, 0.0])
# Weak statement
a00 = mu * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
a01 = -ufl.inner(p, ufl.div(v)) * ufl.dx
a10 = -ufl.inner(ufl.div(u), q) * ufl.dx
L0 = ufl.inner(f, v) * ufl.dx
L1 = ufl.ZeroBaseForm((q,))
forms = fem.form([[a00, a01], [a10, None]])
rhs_forms = fem.form([L0, L1])
# Assemble - THIS IS WHERE THE BUG OCCURS with MPI and hexahedral cells
A = dolfinx_mpc.create_matrix_nest(forms, constraints=[mpc_u, mpc_p])
dolfinx_mpc.assemble_matrix_nest(A, forms, constraints=[mpc_u, mpc_p], bcs=[bc])
A.assemble()
b = dolfinx_mpc.create_vector_nest(rhs_forms, constraints=[mpc_u, mpc_p])
dolfinx_mpc.assemble_vector_nest(b, rhs_forms, constraints=[mpc_u, mpc_p])
# Apply lifting for boundary conditions
bcs_block = fem.bcs_by_block(fem.extract_function_spaces(forms, 1), [bc])
dolfinx_mpc.apply_lifting(b, forms, bcs_block, constraint=[mpc_u, mpc_p])
# Ghost update after lifting
for b_sub in b.getNestSubVecs():
b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
# Set BC values in RHS
bcs0 = fem.bcs_by_block(fem.extract_function_spaces(rhs_forms), [bc])
fem.petsc.set_bc(b, bcs0)
# Setup Minres solver
ksp = PETSc.KSP().create(domain.comm)
ksp.setOperators(A)
ksp.setErrorIfNotConverged(True)
ksp.setType("minres")
rtol = 100 * np.finfo(rtype).eps
atol = 2 * np.finfo(rtype).eps
ksp.setTolerances(rtol=rtol, atol=atol)
# Setup preconditioning
pc = ksp.getPC()
pc.setType("fieldsplit")
pc.setFieldSplitType(PETSc.PC.CompositeType.ADDITIVE)
nested_IS = A.getNestISs()
pc.setFieldSplitIS(("u", nested_IS[0][0]), ("p", nested_IS[0][1]))
ksp_u, ksp_p = pc.getFieldSplitSubKSP()
ksp_u.setType("preonly")
ksp_u.getPC().setType("lu")
ksp_u.getPC().setFactorSolverType("mumps")
ksp_p.setType("preonly")
ksp_p.getPC().setType("jacobi")
# Finalize KSP setup
ksp.setFromOptions()
# Create solution functions
uh = fem.Function(mpc_u.function_space)
ph = fem.Function(mpc_p.function_space)
# Solve the system
x = b.duplicate()
ksp.solve(b, x)
la.petsc._ghost_update(
x,
insert_mode=PETSc.InsertMode.INSERT, # type: ignore
scatter_mode=PETSc.ScatterMode.FORWARD, # type: ignore
) # type: ignore
fem.petsc.assign(x, [uh, ph])
# Apply backsubstitution for MPCs
mpc_u.backsubstitution(uh)
mpc_p.backsubstitution(ph)
uh.x.scatter_forward()
ph.x.scatter_forward()
# Verify solution: Poiseuille flow u_x = (dp/dx) * (1/(2*mu)) * y * (H - y)
# For our parameters: mu=1, dp/dx=-1, H=1
# u_x = -(-1) * (1/2) * y * (1 - y) = 0.5 * y * (1 - y)
# Maximum velocity at y=0.5: u_max = 0.5 * 0.5 * 0.5 = 0.125
# Create analytical solution function
def u_exact_expr(x):
"""Exact solution for Poiseuille flow"""
values = np.zeros((3, x.shape[1]))
values[0] = 0.5 * x[1] * (1.0 - x[1]) # u_x component
return values
u_exact = fem.Function(mpc_u.function_space)
u_exact.interpolate(u_exact_expr)
u_exact.x.scatter_forward()
# Compute error
error_u = uh.x.array - u_exact.x.array
error_norm = np.linalg.norm(error_u)
error_norm_global = domain.comm.allreduce(error_norm**2, op=MPI.SUM) ** 0.5
assert error_norm_global < np.sqrt(rtol), f"Velocity error too high: {error_norm_global}"
# Cleanup
ksp.destroy()
A.destroy()
b.destroy()
x.destroy()
|