File: bench_contact_3D.py

package info (click to toggle)
dolfinx-mpc 0.5.0.post0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,112 kB
  • sloc: python: 5,998; cpp: 5,196; makefile: 67
file content (350 lines) | stat: -rw-r--r-- 14,321 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright (C) 2020-2021 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
#
# Multi point constraint problem for linear elasticity with slip conditions
# between two cubes.

from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser

import numpy as np
from dolfinx.common import Timer, TimingType, list_timings, timing
from dolfinx.cpp.mesh import entities_to_geometry
from dolfinx.fem import (Constant, Function, VectorFunctionSpace, dirichletbc,
                         form, locate_dofs_topological, set_bc)
from dolfinx.io import XDMFFile
from dolfinx.mesh import (CellType, compute_midpoints, create_mesh,
                          create_unit_cube, locate_entities_boundary, meshtags,
                          refine)
from dolfinx_mpc import (MultiPointConstraint, apply_lifting, assemble_matrix,
                         assemble_vector)
from dolfinx_mpc.utils import (create_normal_approximation, log_info,
                               rigid_motions_nullspace, rotation_matrix)
from mpi4py import MPI
from petsc4py import PETSc
from ufl import (Cell, Identity, Mesh, TestFunction, TrialFunction,
                 VectorElement, dx, grad, inner, sym, tr)

comm = MPI.COMM_WORLD


def mesh_3D_dolfin(theta=0, ct=CellType.tetrahedron, ext="tetrahedron", num_refinements=0, N0=5):
    timer = Timer("Create mesh")

    def find_plane_function(p0, p1, p2):
        """
        Find plane function given three points:
        http://www.nabla.hr/CG-LinesPlanesIn3DA3.htm
        """
        v1 = np.array(p1) - np.array(p0)
        v2 = np.array(p2) - np.array(p0)

        n = np.cross(v1, v2)
        D = -(n[0] * p0[0] + n[1] * p0[1] + n[2] * p0[2])
        return lambda x: np.isclose(0, np.dot(n, x) + D)

    def over_plane(p0, p1, p2):
        """
        Returns function that checks if a point is over a plane defined
        by the points p0, p1 and p2.
        """
        v1 = np.array(p1) - np.array(p0)
        v2 = np.array(p2) - np.array(p0)

        n = np.cross(v1, v2)
        D = -(n[0] * p0[0] + n[1] * p0[1] + n[2] * p0[2])
        return lambda x: n[0] * x[0] + n[1] * x[1] + D > -n[2] * x[2]

    tmp_mesh_name = "tmp_mesh.xdmf"
    r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

    if MPI.COMM_WORLD.rank == 0:
        # Create two coarse meshes and merge them
        mesh0 = create_unit_cube(MPI.COMM_SELF, N0, N0, N0, ct)
        mesh0.geometry.x[:, 2] += 1
        mesh1 = create_unit_cube(MPI.COMM_SELF, 2 * N0, 2 * N0, 2 * N0, ct)

        tdim0 = mesh0.topology.dim
        num_cells0 = mesh0.topology.index_map(tdim0).size_local
        cells0 = entities_to_geometry(mesh0, tdim0, np.arange(num_cells0, dtype=np.int32).reshape((-1, 1)), False)
        tdim1 = mesh1.topology.dim
        num_cells1 = mesh1.topology.index_map(tdim1).size_local
        cells1 = entities_to_geometry(mesh1, tdim1, np.arange(num_cells1, dtype=np.int32).reshape((-1, 1)), False)
        cells1 += mesh0.geometry.x.shape[0]

        # Concatenate points and cells
        points = np.vstack([mesh0.geometry.x, mesh1.geometry.x])
        cells = np.vstack([cells0, cells1])
        cell = Cell(ext, geometric_dimension=points.shape[1])
        domain = Mesh(VectorElement("Lagrange", cell, 1))
        # Rotate mesh
        points = np.dot(r_matrix, points.T).T

        mesh = create_mesh(MPI.COMM_SELF, cells, points, domain)
        with XDMFFile(MPI.COMM_SELF, tmp_mesh_name, "w") as xdmf:
            xdmf.write_mesh(mesh)

    MPI.COMM_WORLD.barrier()
    with XDMFFile(MPI.COMM_WORLD, tmp_mesh_name, "r") as xdmf:
        mesh = xdmf.read_mesh()

    # Refine coarse mesh
    for i in range(num_refinements):
        mesh.topology.create_entities(mesh.topology.dim - 2)
        mesh = refine(mesh, redistribute=True)

    tdim = mesh.topology.dim
    fdim = tdim - 1
    # Find information about facets to be used in meshtags
    bottom_points = np.dot(r_matrix, np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]]).T)
    bottom = find_plane_function(bottom_points[:, 0], bottom_points[:, 1], bottom_points[:, 2])
    bottom_facets = locate_entities_boundary(mesh, fdim, bottom)
    top_points = np.dot(r_matrix, np.array([[0, 0, 2], [1, 0, 2], [0, 1, 2], [1, 1, 2]]).T)
    top = find_plane_function(top_points[:, 0], top_points[:, 1], top_points[:, 2])
    top_facets = locate_entities_boundary(mesh, fdim, top)

    # Determine interface facets
    if_points = np.dot(r_matrix, np.array([[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]).T)
    interface = find_plane_function(if_points[:, 0], if_points[:, 1], if_points[:, 2])
    i_facets = locate_entities_boundary(mesh, fdim, interface)
    mesh.topology.create_connectivity(fdim, tdim)
    top_interface = []
    bottom_interface = []
    facet_to_cell = mesh.topology.connectivity(fdim, tdim)
    num_cells = mesh.topology.index_map(tdim).size_local

    # Find top and bottom interface facets
    cell_midpoints = compute_midpoints(mesh, tdim, range(num_cells))
    top_cube = over_plane(if_points[:, 0], if_points[:, 1], if_points[:, 2])
    for facet in i_facets:
        i_cells = facet_to_cell.links(facet)
        assert len(i_cells == 1)
        i_cell = i_cells[0]
        if top_cube(cell_midpoints[i_cell]):
            top_interface.append(facet)
        else:
            bottom_interface.append(facet)

    # Create cell tags
    num_cells = mesh.topology.index_map(tdim).size_local
    cell_midpoints = compute_midpoints(mesh, tdim, range(num_cells))
    top_cube_marker = 2
    indices = []
    values = []
    for cell_index in range(num_cells):
        if top_cube(cell_midpoints[cell_index]):
            indices.append(cell_index)
            values.append(top_cube_marker)
    ct = meshtags(mesh, tdim, np.array(indices, dtype=np.intc), np.array(values, dtype=np.intc))

    # Create meshtags for facet data
    markers = {3: top_facets, 4: bottom_interface, 9: top_interface,
               5: bottom_facets}  # , 6: left_facets, 7: right_facets}
    indices = np.array([], dtype=np.intc)
    values = np.array([], dtype=np.intc)
    for key in markers.keys():
        indices = np.append(indices, markers[key])
        values = np.append(values, np.full(len(markers[key]), key, dtype=np.intc))
    sorted_indices = np.argsort(indices)
    mt = meshtags(mesh, fdim, indices[sorted_indices], values[sorted_indices])
    mt.name = "facet_tags"
    fname = f"meshes/mesh_{ext}_{theta:.2f}.xdmf"

    with XDMFFile(MPI.COMM_WORLD, fname, "w") as o_f:
        o_f.write_mesh(mesh)
        o_f.write_meshtags(ct)
        o_f.write_meshtags(mt)
    timer.stop()


def demo_stacked_cubes(theta, ct, noslip, num_refinements, N0, timings=False):
    celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron"
    type_ext = "no_slip" if noslip else "slip"
    log_info(f"Run theta: {theta:.2f}, Cell: {celltype:s}, Noslip: {noslip:b}")

    # Read in mesh
    mesh_3D_dolfin(theta=theta, ct=ct, ext=celltype, num_refinements=num_refinements, N0=N0)
    comm.barrier()
    with XDMFFile(comm, f"meshes/mesh_{celltype}_{theta:.2f}.xdmf", "r") as xdmf:
        mesh = xdmf.read_mesh(name="mesh")
        tdim = mesh.topology.dim
        fdim = tdim - 1
        mesh.topology.create_connectivity(tdim, tdim)
        mesh.topology.create_connectivity(fdim, tdim)
        mt = xdmf.read_meshtags(mesh, "facet_tags")
    mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext:s}"

    # Create functionspaces
    V = VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Define boundary conditions
    # Bottom boundary is fixed in all directions
    u_bc = Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bottom_dofs = locate_dofs_topological(V, fdim, mt.find(5))
    bc_bottom = dirichletbc(u_bc, bottom_dofs)

    g_vec = [0, 0, -4.25e-1]
    if not noslip:
        # Helper for orienting traction
        r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)

        # Top boundary has a given deformation normal to the interface
        g_vec = np.dot(r_matrix, [0, 0, -4.25e-1])

    def top_v(x):
        values = np.empty((3, x.shape[1]))
        values[0] = g_vec[0]
        values[1] = g_vec[1]
        values[2] = g_vec[2]
        return values
    u_top = Function(V)
    u_top.interpolate(top_v)
    u_top.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT_VALUES, mode=PETSc.ScatterMode.FORWARD)

    top_dofs = locate_dofs_topological(V, fdim, mt.find(3))
    bc_top = dirichletbc(u_top, top_dofs)

    bcs = [bc_bottom, bc_top]

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e3)
    nu = 0
    mu = Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v)))
    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    rhs = inner(Constant(mesh, PETSc.ScalarType((0, 0, 0))), v) * dx

    log_info("Create constraints")

    mpc = MultiPointConstraint(V)
    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    if noslip:
        with Timer(f"{num_dofs}: Contact-constraint"):
            mpc.create_contact_inelastic_condition(mt, 4, 9)
    else:
        with Timer(f"{num_dofs}: FacetNormal"):
            nh = create_normal_approximation(V, mt, 4)
        with Timer(f"{num_dofs}: Contact-constraint"):
            mpc.create_contact_slip_condition(mt, 4, 9, nh)

    with Timer(f"{num_dofs}: MPC-init"):
        mpc.finalize()
    null_space = rigid_motions_nullspace(mpc.function_space)
    log_info(f"Num dofs: {num_dofs}")

    log_info("Assemble matrix")
    bilinear_form = form(a)
    linear_form = form(rhs)
    with Timer(f"{num_dofs}: Assemble-matrix (C++)"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer(f"{num_dofs}: Assemble-vector (C++)"):
        b = assemble_vector(linear_form, mpc)
    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)
    list_timings(MPI.COMM_WORLD, [TimingType.wall])

    # Solve Linear problem
    opts = PETSc.Options()
    # opts["ksp_rtol"] = 1.0e-8
    opts["pc_type"] = "gamg"
    # opts["pc_gamg_type"] = "agg"
    # opts["pc_gamg_coarse_eq_limit"] = 1000
    # opts["pc_gamg_sym_graph"] = True
    # opts["mg_levels_ksp_type"] = "chebyshev"
    # opts["mg_levels_pc_type"] = "jacobi"
    # opts["mg_levels_esteig_ksp_type"] = "cg"
    # opts["matptap_via"] = "scalable"
    # opts["pc_gamg_square_graph"] = 2
    # opts["pc_gamg_threshold"] = 1e-2
    # opts["help"] = None  # List all available options
    if timings:
        opts["ksp_view"] = None  # List progress of solver
    # Create functionspace and build near nullspace

    A.setNearNullSpace(null_space)
    solver = PETSc.KSP().create(comm)
    solver.setOperators(A)
    solver.setFromOptions()
    uh = b.copy()
    uh.set(0)
    log_info("Solve")
    with Timer(f"{num_dofs}: Solve"):
        solver.solve(b, uh)
        uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
    log_info("Backsub")
    with Timer(f"{num_dofs}: Backsubstitution"):
        mpc.backsubstitution(uh)

    it = solver.getIterationNumber()

    # Write solution to file
    u_h = Function(mpc.function_space)
    u_h.vector.setArray(uh.array)
    u_h.name = "u"
    with XDMFFile(comm, f"results/bench_contact_{num_dofs}.xdmf", "w") as outfile:
        outfile.write_mesh(mesh)
        outfile.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
    # Write performance data to file
    if timings:
        log_info("Timings")
        num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
        results_file = None
        num_procs = comm.size
        if comm.rank == 0:
            results_file = open(f"results_bench_{num_dofs}.txt", "w")
            print(f"#Procs: {num_procs}", file=results_file)
            print(f"#Dofs: {num_dofs}", file=results_file)
            print(f"#Slaves: {num_slaves}", file=results_file)
            print(f"#Iterations: {it}", file=results_file)
        operations = ["Solve", "Assemble-matrix (C++)", "MPC-init", "Contact-constraint", "FacetNormal",
                      "Assemble-vector (C++)", "Backsubstitution"]
        if comm.rank == 0:
            print("Operation  #Calls Avg Min Max", file=results_file)
        for op in operations:
            op_timing = timing(f"{num_dofs}: {op}")
            num_calls = op_timing[0]
            wall_time = op_timing[1]
            avg_time = comm.allreduce(wall_time, op=MPI.SUM) / comm.size
            min_time = comm.allreduce(wall_time, op=MPI.MIN)
            max_time = comm.allreduce(wall_time, op=MPI.MAX)
            if comm.rank == 0:
                print(op, num_calls, avg_time, min_time, max_time, file=results_file)
        list_timings(MPI.COMM_WORLD, [TimingType.wall])


if __name__ == "__main__":
    parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("--theta", default=np.pi / 3, type=np.float64,
                        dest="theta", help="Rotation angle around axis [1, 1, 0]")
    parser.add_argument("--ref", default=0, type=np.int32,
                        dest="ref", help="Numer of mesh refinements")
    parser.add_argument("--N0", default=3, type=np.int32,
                        dest="N0", help="Initial mesh resolution")

    hex = parser.add_mutually_exclusive_group(required=False)
    hex.add_argument('--hex', dest='hex', action='store_true', help="Use hexahedron mesh", default=False)
    slip = parser.add_mutually_exclusive_group(required=False)
    slip.add_argument('--no-slip', dest='noslip', action='store_true',
                      help="Use no-slip constraint", default=False)

    args = parser.parse_args()
    ct = CellType.hexahedron if args.hex else CellType.tetrahedron

    # Create cache
    demo_stacked_cubes(theta=args.theta, ct=ct, num_refinements=0, N0=3, noslip=args.noslip, timings=False)

    # Run benchmark
    demo_stacked_cubes(theta=args.theta, ct=ct, num_refinements=args.ref, N0=args.N0, noslip=args.noslip, timings=True)