1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
# This demo program solves Poisson's equation
#
# - div grad u(x, y) = f(x, y)
#
# on the unit square with homogeneous Dirichlet boundary conditions
# at y = 0, 1 and periodic boundary conditions at x = 0, 1.
#
# Copyright (C) Jørgen S. Dokken 2020.
#
# This file is part of DOLFINX_MPC.
#
# SPDX-License-Identifier: MIT
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
import h5py
import numpy as np
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.fem import (Function, FunctionSpace, dirichletbc, form,
locate_dofs_geometrical, set_bc)
from dolfinx.io import XDMFFile
from dolfinx.mesh import (CellType, create_unit_cube, locate_entities_boundary,
meshtags)
from dolfinx_mpc import (MultiPointConstraint, apply_lifting, assemble_matrix,
assemble_vector)
from dolfinx_mpc.utils import log_info
from mpi4py import MPI
from petsc4py import PETSc
from ufl import (SpatialCoordinate, TestFunction, TrialFunction, dx, exp, grad,
inner, pi, sin)
def demo_periodic3D(tetra, r_lvl=0, out_hdf5=None,
xdmf=False, boomeramg=False, kspview=False, degree=1):
# Create mesh and function space
log_info(f"Run {r_lvl}: Create mesh")
ct = CellType.tetrahedron if tetra else CellType.hexahedron
# Tet setup
N = 3
for i in range(r_lvl):
N *= 2
mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, ct)
V = FunctionSpace(mesh, ("CG", degree))
# Create Dirichlet boundary condition
def dirichletboundary(x):
return np.logical_or(np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)),
np.logical_or(np.isclose(x[2], 0), np.isclose(x[2], 1)))
mesh.topology.create_connectivity(2, 1)
geometrical_dofs = locate_dofs_geometrical(V, dirichletboundary)
bc = dirichletbc(PETSc.ScalarType(0), geometrical_dofs, V)
bcs = [bc]
def PeriodicBoundary(x):
return np.isclose(x[0], 1)
def periodic_relation(x):
out_x = np.zeros(x.shape)
out_x[0] = 1 - x[0]
out_x[1] = x[1]
out_x[2] = x[2]
return out_x
num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
log_info(f"Run {r_lvl}: Create MultiPoint Constraint {num_dofs}")
with Timer("~Periodic: Initialize periodic constraint"):
facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, PeriodicBoundary)
arg_sort = np.argsort(facets)
mt = meshtags(mesh, mesh.topology.dim - 1, facets[arg_sort], np.full(len(facets), 2, dtype=np.int32))
mpc = MultiPointConstraint(V)
mpc.create_periodic_constraint_topological(V, mt, 2, periodic_relation, bcs)
mpc.finalize()
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(u), grad(v)) * dx
x = SpatialCoordinate(mesh)
dx_ = x[0] - 0.9
dy_ = x[1] - 0.5
dz_ = x[2] - 0.1
f = x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp(-(dx_**2 + dy_**2 + dz_**2) / 0.02)
rhs = inner(f, v) * dx
# Assemble LHS and RHS with multi-point constraint
log_info(f"Run {r_lvl}: Assemble matrix")
bilinear_form = form(a)
with Timer(f"~Periodic {r_lvl}: Assemble matrix (cached)"):
A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
log_info(f"Run {r_lvl}: Assembling vector")
linear_form = form(rhs)
with Timer(f"~Periodic: {r_lvl} Assemble vector (Total time)"):
b = assemble_vector(linear_form, mpc)
# Apply boundary conditions
log_info(f"Run {r_lvl}: Apply lifting")
apply_lifting(b, [bilinear_form], [bcs], mpc)
b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
set_bc(b, bcs)
# Create nullspace
nullspace = PETSc.NullSpace().create(constant=True)
# Set PETSc solver options
opts = PETSc.Options()
if boomeramg:
opts["ksp_type"] = "cg"
opts["ksp_rtol"] = 1.0e-5
opts["pc_type"] = "hypre"
opts['pc_hypre_type'] = 'boomeramg'
opts["pc_hypre_boomeramg_max_iter"] = 1
opts["pc_hypre_boomeramg_cycle_type"] = "v"
# opts["pc_hypre_boomeramg_print_statistics"] = 1
else:
opts["ksp_type"] = "cg"
opts["ksp_rtol"] = 1.0e-12
opts["pc_type"] = "gamg"
opts["pc_gamg_type"] = "agg"
opts["pc_gamg_sym_graph"] = True
# Use Chebyshev smoothing for multigrid
opts["mg_levels_ksp_type"] = "richardson"
opts["mg_levels_pc_type"] = "sor"
# opts["help"] = None # List all available options
# opts["ksp_view"] = None # List progress of solver
# Solve linear problem
log_info(f"Run {r_lvl}: Solving")
solver = PETSc.KSP().create(MPI.COMM_WORLD)
with Timer("~Periodic: Solve") as timer:
# Create solver, set operator and options
PETSc.Mat.setNearNullSpace(A, nullspace)
uh = b.copy()
solver.setFromOptions()
solver.setOperators(A)
solver.solve(b, uh)
uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
mpc.backsubstitution(uh)
solver_time = timer.elapsed()
if kspview:
solver.view()
# Output information to HDF5
it = solver.getIterationNumber()
num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
if out_hdf5 is not None:
d_set = out_hdf5.get("its")
d_set[r_lvl] = it
d_set = out_hdf5.get("num_dofs")
d_set[r_lvl] = num_dofs
d_set = out_hdf5.get("num_slaves")
d_set[r_lvl, MPI.COMM_WORLD.rank] = mpc.num_local_slaves
d_set = out_hdf5.get("solve_time")
d_set[r_lvl, MPI.COMM_WORLD.rank] = solver_time[0]
if MPI.COMM_WORLD.rank == 0:
print(f"Rlvl {r_lvl}, Iterations {it}")
# Output solution to XDMF
if xdmf:
# Create function space with correct index map for MPC
u_h = Function(mpc.function_space)
u_h.vector.setArray(uh.array)
# Name formatting of functions
ext = "tet" if tetra else "hex"
mesh.name = f"mesh_{ext}"
u_h.name = f"u_{ext}"
fname = f"results/bench_periodic3d_{r_lvl}_{ext}.xdmf"
with XDMFFile(MPI.COMM_WORLD, fname, "w") as out_xdmf:
out_xdmf.write_mesh(mesh)
out_xdmf.write_function(u_h, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
if __name__ == "__main__":
# Set Argparser defaults
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--nref", default=1, type=np.int8, dest="n_ref", help="Number of spatial refinements")
parser.add_argument("--degree", default=1, type=np.int8, dest="degree", help="CG Function space degree")
parser.add_argument('--xdmf', action='store_true', dest="xdmf",
help="XDMF-output of function (Default false)")
parser.add_argument('--timings', action='store_true', dest="timings", help="List timings (Default false)")
parser.add_argument('--kspview', action='store_true', dest="kspview", help="View PETSc progress")
parser.add_argument("-o", default='periodic_output.hdf5', dest="hdf5", help="Name of HDF5 output file")
ct_parser = parser.add_mutually_exclusive_group(required=False)
ct_parser.add_argument('--tet', dest='tetra', action='store_true', help="Tetrahedron elements")
ct_parser.add_argument('--hex', dest='tetra', action='store_false', help="Hexahedron elements")
solver_parser = parser.add_mutually_exclusive_group(required=False)
solver_parser.add_argument('--boomeramg', dest='boomeramg', default=True,
action='store_true', help="Use BoomerAMG preconditioner (Default)")
solver_parser.add_argument('--gamg', dest='boomeramg', action='store_false',
help="Use PETSc GAMG preconditioner")
args = parser.parse_args()
N = args.n_ref + 1
# Prepare output HDF5 file
h5f = h5py.File(args.hdf5, 'w', driver='mpio', comm=MPI.COMM_WORLD)
h5f.create_dataset("its", (N,), dtype=np.int32)
h5f.create_dataset("num_dofs", (N,), dtype=np.int32)
h5f.create_dataset("num_slaves", (N, MPI.COMM_WORLD.size), dtype=np.int32)
sd = h5f.create_dataset("solve_time", (N, MPI.COMM_WORLD.size), dtype=np.float64)
solver = "BoomerAMG" if args.boomeramg else "GAMG"
ct = "Tet" if args.tetra else "Hex"
sd.attrs["solver"] = np.string_(solver)
sd.attrs["degree"] = np.string_(str(int(args.degree)))
sd.attrs["ct"] = np.string_(ct)
# Loop over refinements
for i in range(N):
log_info(f"Run {i} in progress")
demo_periodic3D(args.tetra, r_lvl=i, out_hdf5=h5f, xdmf=args.xdmf,
boomeramg=args.boomeramg, kspview=args.kspview, degree=int(args.degree))
# List_timings
if args.timings and i == N - 1:
list_timings(MPI.COMM_WORLD, [TimingType.wall])
h5f.close()
|