1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
import dolfinx.fem as fem
import dolfinx_mpc.utils
import numpy as np
import scipy.sparse.linalg
from dolfinx.common import Timer
from dolfinx.io import XDMFFile
from dolfinx.mesh import create_unit_square, locate_entities_boundary
from dolfinx_mpc import (MultiPointConstraint, LinearProblem)
from mpi4py import MPI
from petsc4py import PETSc
from ufl import (Identity, SpatialCoordinate, TestFunction, TrialFunction,
as_vector, dx, grad, inner, sym, tr)
def demo_elasticity():
mesh = create_unit_square(MPI.COMM_WORLD, 10, 10)
V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))
# Generate Dirichlet BC on lower boundary (Fixed)
def boundaries(x):
return np.isclose(x[0], np.finfo(float).eps)
facets = locate_entities_boundary(mesh, 1, boundaries)
topological_dofs = fem.locate_dofs_topological(V, 1, facets)
bc = fem.dirichletbc(np.array([0, 0], dtype=PETSc.ScalarType), topological_dofs, V)
bcs = [bc]
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
# Elasticity parameters
E = PETSc.ScalarType(1.0e4)
nu = 0.0
mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))
# Stress computation
def sigma(v):
return (2.0 * mu * sym(grad(v))
+ lmbda * tr(sym(grad(v))) * Identity(len(v)))
x = SpatialCoordinate(mesh)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(sigma(u), grad(v)) * dx
rhs = inner(as_vector((0, (x[0] - 0.5) * 10**4 * x[1])), v) * dx
# Create MPC
def l2b(li):
return np.array(li, dtype=np.float64).tobytes()
s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.9}}
mpc = MultiPointConstraint(V)
mpc.create_general_constraint(s_m_c, 1, 1)
mpc.finalize()
# Solve Linear problem
petsc_options = {"ksp_type": "preonly", "pc_type": "lu"}
problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options)
u_h = problem.solve()
u_h.name = "u_mpc"
with XDMFFile(MPI.COMM_WORLD, "results/demo_elasticity.xdmf", "w") as outfile:
outfile.write_mesh(mesh)
outfile.write_function(u_h)
# Solve the MPC problem using a global transformation matrix
# and numpy solvers to get reference values
bilinear_form = fem.form(a)
A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
A_org.assemble()
linear_form = fem.form(rhs)
L_org = fem.petsc.assemble_vector(linear_form)
fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
fem.petsc.set_bc(L_org, bcs)
solver = PETSc.KSP().create(MPI.COMM_WORLD)
solver.setType(PETSc.KSP.Type.PREONLY)
solver.getPC().setType(PETSc.PC.Type.LU)
solver.setOperators(A_org)
u_ = fem.Function(V)
solver.solve(L_org, u_.vector)
u_.x.scatter_forward()
u_.name = "u_unconstrained"
with XDMFFile(MPI.COMM_WORLD, "results/demo_elasticity.xdmf", "a") as outfile:
outfile.write_function(u_)
outfile.close()
root = 0
with Timer("~Demo: Verification"):
dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem.A, mpc, root=root)
dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem.b, mpc, root=root)
# Gather LHS, RHS and solution on one process
A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root)
if MPI.COMM_WORLD.rank == root:
KTAK = K.T * A_csr * K
reduced_L = K.T @ L_np
# Solve linear system
d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
# Back substitution to full solution vector
uh_numpy = K @ d
assert np.allclose(uh_numpy, u_mpc)
# Print out master-slave connectivity for the first slave
master_owner = None
master_data = None
slave_owner = None
if mpc.num_local_slaves > 0:
slave_owner = MPI.COMM_WORLD.rank
bs = mpc.function_space.dofmap.index_map_bs
slave = mpc.slaves[0]
print("Constrained: {0:.5e}\n Unconstrained: {1:.5e}"
.format(u_h.x.array[slave], u_.vector.array[slave]))
master_owner = mpc._cpp_object.owners.links(slave)[0]
_masters = mpc.masters
master = _masters.links(slave)[0]
glob_master = mpc.function_space.dofmap.index_map.local_to_global([master // bs])[0]
coeffs, offs = mpc.coefficients()
master_data = [glob_master * bs + master % bs,
coeffs[offs[slave]:offs[slave + 1]][0]]
# If master not on proc send info to this processor
if MPI.COMM_WORLD.rank != master_owner:
MPI.COMM_WORLD.send(master_data, dest=master_owner, tag=1)
else:
print("Master*Coeff: {0:.5e}".format(coeffs[offs[slave]:offs[slave + 1]][0]
* u_h.x.array[_masters.links(slave)[0]]))
# As a processor with a master is not aware that it has a master,
# Determine this so that it can receive the global dof and coefficient
master_recv = MPI.COMM_WORLD.allgather(master_owner)
for master in master_recv:
if master is not None:
master_owner = master
break
if slave_owner != master_owner and MPI.COMM_WORLD.rank == master_owner:
dofmap = mpc.function_space.dofmap
bs = dofmap.index_map_bs
in_data = MPI.COMM_WORLD.recv(source=MPI.ANY_SOURCE, tag=1)
num_local = dofmap.index_map.size_local + dofmap.index_map.num_ghosts
l2g = dofmap.index_map.local_to_global(np.arange(num_local, dtype=np.int32))
l_index = np.flatnonzero(l2g == in_data[0] // bs)[0]
print("Master*Coeff (on other proc): {0:.5e}"
.format(u_h.x.array[l_index * bs + in_data[0] % bs] * in_data[1]))
if __name__ == "__main__":
demo_elasticity()
|