1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
#
# Create constraint between two bodies that are not in contact
import gmsh
import numpy as np
from dolfinx.fem import (Constant, Function, FunctionSpace,
VectorFunctionSpace, dirichletbc,
locate_dofs_topological)
from dolfinx.io import XDMFFile, gmshio
from dolfinx_mpc import LinearProblem, MultiPointConstraint
from dolfinx_mpc.utils import (create_point_to_point_constraint,
determine_closest_block,
rigid_motions_nullspace)
from mpi4py import MPI
from petsc4py import PETSc
from ufl import (Identity, Measure, SpatialCoordinate, TestFunction,
TrialFunction, as_vector, grad, inner, sym, tr)
# Mesh parameters for creating a mesh consisting of two spheres,
# Sphere(r2)\Sphere(r1) and Sphere(r_0)
r0, r0_tag = 0.4, 1
r1, r1_tag = 0.5, 2
r2, r2_tag = 0.8, 3
outer_tag = 1
inner_tag = 2
assert r0 < r1 and r1 < r2
gmsh.initialize()
if MPI.COMM_WORLD.rank == 0:
gmsh.clear()
# Create Sphere(r2)\Sphere(r1)
p0 = gmsh.model.occ.addPoint(0, 0, 0)
outer_sphere = gmsh.model.occ.addSphere(0, 0, 0, r2)
mid_sphere = gmsh.model.occ.addSphere(0, 0, 0, r1)
hollow_sphere = gmsh.model.occ.cut([(3, outer_sphere)], [(3, mid_sphere)])
# Create Sphere(r0)
inner_sphere = gmsh.model.occ.addSphere(0, 0, 0, r0)
gmsh.model.occ.synchronize()
# Add physical tags for volumes
gmsh.model.addPhysicalGroup(hollow_sphere[0][0][0], [hollow_sphere[0][0][1]], tag=outer_tag)
gmsh.model.setPhysicalName(hollow_sphere[0][0][0], 1, "Hollow sphere")
gmsh.model.addPhysicalGroup(3, [inner_sphere], tag=inner_tag)
gmsh.model.setPhysicalName(3, 2, "Inner sphere")
# Add physical tags for surfaces
r1_surface, r2_surface = [], []
hollow_boundary = gmsh.model.getBoundary(hollow_sphere[0], oriented=False)
inner_boundary = gmsh.model.getBoundary([(3, inner_sphere)], oriented=False)
for boundary in hollow_boundary:
bbox = gmsh.model.getBoundingBox(boundary[0], boundary[1])
if np.isclose(max(bbox), r1):
r1_surface.append(boundary[1])
elif np.isclose(max(bbox), r2):
r2_surface.append(boundary[1])
gmsh.model.addPhysicalGroup(inner_boundary[0][0], [inner_boundary[0][1]], r0_tag)
gmsh.model.setPhysicalName(inner_boundary[0][0], r0_tag, "Inner boundary")
gmsh.model.addPhysicalGroup(2, r1_surface, r1_tag)
gmsh.model.setPhysicalName(2, r1_tag, "Mid boundary")
gmsh.model.addPhysicalGroup(2, r2_surface, r2_tag)
gmsh.model.setPhysicalName(2, r2_tag, "Outer boundary")
# Set mesh resolution
res_inner = r0 / 5
res_outer = (r1 + r2) / 5
gmsh.model.occ.synchronize()
gmsh.model.mesh.field.add("Distance", 1)
gmsh.model.mesh.field.setNumbers(1, "NodesList", [p0])
gmsh.model.mesh.field.add("Threshold", 2)
gmsh.model.mesh.field.setNumber(2, "IField", 1)
gmsh.model.mesh.field.setNumber(2, "LcMin", res_inner)
gmsh.model.mesh.field.setNumber(2, "LcMax", res_outer)
gmsh.model.mesh.field.setNumber(2, "DistMin", r0)
gmsh.model.mesh.field.setNumber(2, "DistMax", r1)
gmsh.model.mesh.field.add("Threshold", 3)
gmsh.model.mesh.field.setNumber(3, "IField", 1)
gmsh.model.mesh.field.setNumber(3, "LcMin", res_outer)
gmsh.model.mesh.field.setNumber(3, "LcMax", res_outer)
gmsh.model.mesh.field.setNumber(3, "DistMin", r1)
gmsh.model.mesh.field.setNumber(3, "DistMax", r2)
gmsh.model.mesh.field.add("Min", 4)
gmsh.model.mesh.field.setNumbers(4, "FieldsList", [2, 3])
gmsh.model.mesh.field.setAsBackgroundMesh(4)
# Generate mesh
gmsh.model.mesh.generate(3)
gmsh.option.setNumber("General.Terminal", 1)
gmsh.model.mesh.optimize("Netgen")
gmsh.model.mesh.setOrder(2)
mesh, ct, ft = gmshio.model_to_mesh(gmsh.model, MPI.COMM_WORLD, 0, gdim=3)
gmsh.clear()
gmsh.finalize()
MPI.COMM_WORLD.barrier()
V = VectorFunctionSpace(mesh, ("Lagrange", 1))
tdim = mesh.topology.dim
fdim = tdim - 1
DG0 = FunctionSpace(mesh, ("DG", 0))
outer_dofs = locate_dofs_topological(DG0, tdim, ct.find(outer_tag))
inner_dofs = locate_dofs_topological(DG0, tdim, ct.find(inner_tag))
# Elasticity parameters
E_outer = 1e3
E_inner = 1e5
nu_outer = 0.3
nu_inner = 0.1
mu = Function(DG0)
lmbda = Function(DG0)
with mu.vector.localForm() as local:
local.array[inner_dofs] = E_inner / (2 * (1 + nu_inner))
local.array[outer_dofs] = E_outer / (2 * (1 + nu_outer))
with lmbda.vector.localForm() as local:
local.array[inner_dofs] = E_inner * nu_inner / ((1 + nu_inner) * (1 - 2 * nu_inner))
local.array[outer_dofs] = E_outer * nu_outer / ((1 + nu_outer) * (1 - 2 * nu_outer))
# Stress computation
def sigma(v):
return (2.0 * mu * sym(grad(v))
+ lmbda * tr(sym(grad(v))) * Identity(len(v)))
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
dx = Measure("dx", domain=mesh, subdomain_data=ct)
a = inner(sigma(u), grad(v)) * dx
x = SpatialCoordinate(mesh)
rhs = inner(Constant(mesh, PETSc.ScalarType((0, 0, 0))), v) * dx
rhs += inner(Constant(mesh, PETSc.ScalarType((0.01, 0.02, 0))), v) * dx(outer_tag)
rhs += inner(as_vector(PETSc.ScalarType((0, 0, -9.81e-2))), v) * dx(inner_tag)
# Create dirichletbc
owning_processor, bc_dofs = determine_closest_block(V, -np.array([-r2, 0, 0]))
bc_dofs = [] if bc_dofs is None else bc_dofs
u_fixed = np.array([0, 0, 0], dtype=PETSc.ScalarType)
bc_fixed = dirichletbc(u_fixed, np.asarray(bc_dofs, dtype=np.int32), V)
bcs = [bc_fixed]
# Create point to point constraints
mpc = MultiPointConstraint(V)
signs = [-1, 1]
axis = [0, 1]
for i in axis:
for s in signs:
r0_point = np.zeros(3)
r1_point = np.zeros(3)
r0_point[i] = s * r0
r1_point[i] = s * r1
sl, ms, co, ow, off = create_point_to_point_constraint(V, r1_point, r0_point)
mpc.add_constraint(V, sl, ms, co, ow, off)
mpc.finalize()
# Create nullspace
null_space = rigid_motions_nullspace(mpc.function_space)
petsc_options = {"ksp_rtol": 1.0e-8, "pc_type": "gamg", "pc_gamg_type": "agg",
"pc_gamg_coarse_eq_limit": 1000, "pc_gamg_sym_graph": True,
"mg_levels_ksp_type": "chebyshev", "mg_levels_pc_type": "jacobi",
"mg_levels_esteig_ksp_type": "cg", "matptap_via": "scalable",
"pc_gamg_square_graph": 2, "pc_gamg_threshold": 0.02
# ,"help": None, "ksp_view": None
}
problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options)
# Build near nullspace
null_space = rigid_motions_nullspace(mpc.function_space)
problem.A.setNearNullSpace(null_space)
u_h = problem.solve()
it = problem.solver.getIterationNumber()
unorm = u_h.vector.norm()
if MPI.COMM_WORLD.rank == 0:
print("Number of iterations: {0:d}".format(it))
# Write solution to file
u_h.name = "u"
with XDMFFile(MPI.COMM_WORLD, "results/demo_elasticity_disconnect.xdmf", "w") as xdmf:
xdmf.write_mesh(mesh)
xdmf.write_function(u_h)
|