File: demo_periodic3d_topological.py

package info (click to toggle)
dolfinx-mpc 0.5.0.post0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,112 kB
  • sloc: python: 5,998; cpp: 5,196; makefile: 67
file content (157 lines) | stat: -rw-r--r-- 6,038 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

# This demo program solves Poisson's equation
#
#     - div grad u(x, y) = f(x, y)
#
# on the unit square with homogeneous Dirichlet boundary conditions
# at y = 0, 1 and periodic boundary conditions at x = 0, 1.
#
# Original implementation in DOLFIN by Kristian B. Oelgaard and Anders Logg
# This implementation can be found at:
# https://bitbucket.org/fenics-project/dolfin/src/master/python/demo/documented/periodic/demo_periodic.py
#
# Copyright (C) Jørgen S. Dokken 2020-2022.
#
# This file is part of DOLFINX_MPCX.
#
# SPDX-License-Identifier:    MIT

from typing import Dict, Union

import dolfinx.fem as fem
import dolfinx_mpc.utils
import numpy as np
import scipy.sparse.linalg
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.io import VTXWriter
from dolfinx.mesh import (CellType, create_unit_cube, locate_entities_boundary,
                          meshtags)
from dolfinx_mpc import LinearProblem
from mpi4py import MPI
from numpy.typing import NDArray
from petsc4py import PETSc
from ufl import (SpatialCoordinate, TestFunction, TrialFunction, as_vector, dx,
                 exp, grad, inner, pi, sin)

# Get PETSc int and scalar types
complex_mode = True if np.dtype(PETSc.ScalarType).kind == 'c' else False


def demo_periodic3D(celltype: CellType):
    # Create mesh and finite element
    if celltype == CellType.tetrahedron:
        # Tet setup
        N = 10
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N)
        V = fem.VectorFunctionSpace(mesh, ("CG", 1))
    else:
        # Hex setup
        N = 10
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron)
        V = fem.VectorFunctionSpace(mesh, ("CG", 2))

    def dirichletboundary(x: NDArray[np.float64]) -> NDArray[np.bool_]:
        return np.logical_or(np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)),
                             np.logical_or(np.isclose(x[2], 0), np.isclose(x[2], 1)))

    # Create Dirichlet boundary condition
    zero = PETSc.ScalarType([0, 0, 0])
    geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary)
    bc = fem.dirichletbc(zero, geometrical_dofs, V)
    bcs = [bc]

    def PeriodicBoundary(x):
        return np.isclose(x[0], 1)

    facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, PeriodicBoundary)
    arg_sort = np.argsort(facets)
    mt = meshtags(mesh, mesh.topology.dim - 1, facets[arg_sort], np.full(len(facets), 2, dtype=np.int32))

    def periodic_relation(x):
        out_x = np.zeros(x.shape)
        out_x[0] = 1 - x[0]
        out_x[1] = x[1]
        out_x[2] = x[2]
        return out_x
    with Timer("~~Periodic: Compute mpc condition"):
        mpc = dolfinx_mpc.MultiPointConstraint(V)
        mpc.create_periodic_constraint_topological(V.sub(0), mt, 2, periodic_relation, bcs, 1)
        mpc.finalize()
    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    x = SpatialCoordinate(mesh)
    dx_ = x[0] - 0.9
    dy_ = x[1] - 0.5
    dz_ = x[2] - 0.1
    f = as_vector((x[0] * sin(5.0 * pi * x[1])
                   + 1.0 * exp(-(dx_ * dx_ + dy_ * dy_ + dz_ * dz_) / 0.02), 0.1 * dx_ * dz_, 0.1 * dx_ * dy_))

    rhs = inner(f, v) * dx

    petsc_options: Dict[str, Union[str, float, int]]
    if complex_mode:
        rtol = 1e-16
        petsc_options = {"ksp_type": "preonly", "pc_type": "lu"}
    else:
        rtol = 1e-8
        petsc_options = {"ksp_type": "cg", "ksp_rtol": rtol, "pc_type": "hypre", "pc_hypre_type": "boomeramg",
                         "pc_hypre_boomeramg_max_iter": 1, "pc_hypre_boomeramg_cycle_type": "v",
                         "pc_hypre_boomeramg_print_statistics": 1}
    problem = LinearProblem(a, rhs, mpc, bcs, petsc_options=petsc_options)
    u_h = problem.solve()

    # --------------------VERIFICATION-------------------------
    print("----Verification----")
    u_ = fem.Function(V)
    u_.x.array[:] = 0
    org_problem = fem.petsc.LinearProblem(a, rhs, u=u_, bcs=bcs, petsc_options=petsc_options)
    with Timer("~Periodic: Unconstrained solve"):
        org_problem.solve()
        it = org_problem.solver.getIterationNumber()
    print(f"Unconstrained solver iterations: {it}")

    # Write solutions to file
    ext = "tet" if celltype == CellType.tetrahedron else "hex"
    u_.name = "u_" + ext + "_unconstrained"

    # NOTE: Workaround as tabulate dof coordinates does not like extra ghosts
    u_out = fem.Function(V)
    old_local = u_out.x.map.size_local * u_out.x.bs
    old_ghosts = u_out.x.map.num_ghosts * u_out.x.bs
    mpc_local = u_h.x.map.size_local * u_h.x.bs
    assert old_local == mpc_local
    u_out.x.array[:old_local + old_ghosts] = u_h.x.array[:mpc_local + old_ghosts]
    u_out.name = "u_" + ext
    fname = f"results/demo_periodic3d_{ext}.bp"
    out_periodic = VTXWriter(MPI.COMM_WORLD, fname, u_out)
    out_periodic.write(0)
    out_periodic.close()

    root = 0
    with Timer("~Demo: Verification"):
        dolfinx_mpc.utils.compare_mpc_lhs(org_problem.A, problem.A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(org_problem.b, problem.b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(org_problem.A, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(org_problem.b, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc, rtol=rtol)


if __name__ == "__main__":
    for celltype in [CellType.hexahedron, CellType.tetrahedron]:
        demo_periodic3D(celltype)
    list_timings(MPI.COMM_WORLD, [TimingType.wall])