1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
# This demo program solves Poisson's equation
#
# - div grad u(x, y) = f(x, y)
#
# on the unit square with homogeneous Dirichlet boundary conditions
# at y = 0, 1 and periodic boundary conditions at x = 0, 1.
#
# Original implementation in DOLFIN by Kristian B. Oelgaard and Anders Logg
# This implementation can be found at:
# https://bitbucket.org/fenics-project/dolfin/src/master/python/demo/documented/periodic/demo_periodic.py
#
# Copyright (C) Jørgen S. Dokken 2020-2022.
#
# This file is part of DOLFINX_MPCX.
#
# SPDX-License-Identifier: MIT
from typing import Dict, Union
import dolfinx.fem as fem
import dolfinx_mpc.utils
import numpy as np
import scipy.sparse.linalg
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.io import VTXWriter
from dolfinx.mesh import (CellType, create_unit_cube, locate_entities_boundary,
meshtags)
from dolfinx_mpc import LinearProblem
from mpi4py import MPI
from numpy.typing import NDArray
from petsc4py import PETSc
from ufl import (SpatialCoordinate, TestFunction, TrialFunction, as_vector, dx,
exp, grad, inner, pi, sin)
# Get PETSc int and scalar types
complex_mode = True if np.dtype(PETSc.ScalarType).kind == 'c' else False
def demo_periodic3D(celltype: CellType):
# Create mesh and finite element
if celltype == CellType.tetrahedron:
# Tet setup
N = 10
mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N)
V = fem.VectorFunctionSpace(mesh, ("CG", 1))
else:
# Hex setup
N = 10
mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron)
V = fem.VectorFunctionSpace(mesh, ("CG", 2))
def dirichletboundary(x: NDArray[np.float64]) -> NDArray[np.bool_]:
return np.logical_or(np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)),
np.logical_or(np.isclose(x[2], 0), np.isclose(x[2], 1)))
# Create Dirichlet boundary condition
zero = PETSc.ScalarType([0, 0, 0])
geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary)
bc = fem.dirichletbc(zero, geometrical_dofs, V)
bcs = [bc]
def PeriodicBoundary(x):
return np.isclose(x[0], 1)
facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, PeriodicBoundary)
arg_sort = np.argsort(facets)
mt = meshtags(mesh, mesh.topology.dim - 1, facets[arg_sort], np.full(len(facets), 2, dtype=np.int32))
def periodic_relation(x):
out_x = np.zeros(x.shape)
out_x[0] = 1 - x[0]
out_x[1] = x[1]
out_x[2] = x[2]
return out_x
with Timer("~~Periodic: Compute mpc condition"):
mpc = dolfinx_mpc.MultiPointConstraint(V)
mpc.create_periodic_constraint_topological(V.sub(0), mt, 2, periodic_relation, bcs, 1)
mpc.finalize()
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(u), grad(v)) * dx
x = SpatialCoordinate(mesh)
dx_ = x[0] - 0.9
dy_ = x[1] - 0.5
dz_ = x[2] - 0.1
f = as_vector((x[0] * sin(5.0 * pi * x[1])
+ 1.0 * exp(-(dx_ * dx_ + dy_ * dy_ + dz_ * dz_) / 0.02), 0.1 * dx_ * dz_, 0.1 * dx_ * dy_))
rhs = inner(f, v) * dx
petsc_options: Dict[str, Union[str, float, int]]
if complex_mode:
rtol = 1e-16
petsc_options = {"ksp_type": "preonly", "pc_type": "lu"}
else:
rtol = 1e-8
petsc_options = {"ksp_type": "cg", "ksp_rtol": rtol, "pc_type": "hypre", "pc_hypre_type": "boomeramg",
"pc_hypre_boomeramg_max_iter": 1, "pc_hypre_boomeramg_cycle_type": "v",
"pc_hypre_boomeramg_print_statistics": 1}
problem = LinearProblem(a, rhs, mpc, bcs, petsc_options=petsc_options)
u_h = problem.solve()
# --------------------VERIFICATION-------------------------
print("----Verification----")
u_ = fem.Function(V)
u_.x.array[:] = 0
org_problem = fem.petsc.LinearProblem(a, rhs, u=u_, bcs=bcs, petsc_options=petsc_options)
with Timer("~Periodic: Unconstrained solve"):
org_problem.solve()
it = org_problem.solver.getIterationNumber()
print(f"Unconstrained solver iterations: {it}")
# Write solutions to file
ext = "tet" if celltype == CellType.tetrahedron else "hex"
u_.name = "u_" + ext + "_unconstrained"
# NOTE: Workaround as tabulate dof coordinates does not like extra ghosts
u_out = fem.Function(V)
old_local = u_out.x.map.size_local * u_out.x.bs
old_ghosts = u_out.x.map.num_ghosts * u_out.x.bs
mpc_local = u_h.x.map.size_local * u_h.x.bs
assert old_local == mpc_local
u_out.x.array[:old_local + old_ghosts] = u_h.x.array[:mpc_local + old_ghosts]
u_out.name = "u_" + ext
fname = f"results/demo_periodic3d_{ext}.bp"
out_periodic = VTXWriter(MPI.COMM_WORLD, fname, u_out)
out_periodic.write(0)
out_periodic.close()
root = 0
with Timer("~Demo: Verification"):
dolfinx_mpc.utils.compare_mpc_lhs(org_problem.A, problem.A, mpc, root=root)
dolfinx_mpc.utils.compare_mpc_rhs(org_problem.b, problem.b, mpc, root=root)
# Gather LHS, RHS and solution on one process
A_csr = dolfinx_mpc.utils.gather_PETScMatrix(org_problem.A, root=root)
K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
L_np = dolfinx_mpc.utils.gather_PETScVector(org_problem.b, root=root)
u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root)
if MPI.COMM_WORLD.rank == root:
KTAK = K.T * A_csr * K
reduced_L = K.T @ L_np
# Solve linear system
d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
# Back substitution to full solution vector
uh_numpy = K @ d
assert np.allclose(uh_numpy, u_mpc, rtol=rtol)
if __name__ == "__main__":
for celltype in [CellType.hexahedron, CellType.tetrahedron]:
demo_periodic3D(celltype)
list_timings(MPI.COMM_WORLD, [TimingType.wall])
|