1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
# This demo program solves Poisson's equation
#
# - div grad u(x, y) = f(x, y)
#
# on the unit square with homogeneous Dirichlet boundary conditions
# at y = 0, 1 and periodic boundary conditions at x = 0, 1.
#
# Copyright (C) Jørgen S. Dokken 2020-2022.
#
# This file is part of DOLFINX_MPCX.
#
# SPDX-License-Identifier: MIT
from typing import Union
import dolfinx.fem as fem
import dolfinx_mpc.utils
import numpy as np
import scipy.sparse.linalg
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.io import XDMFFile
from dolfinx.mesh import create_unit_square, locate_entities_boundary
from dolfinx_mpc import LinearProblem, MultiPointConstraint
from mpi4py import MPI
from petsc4py import PETSc
from ufl import (SpatialCoordinate, TestFunction, TrialFunction, as_vector, dx,
exp, grad, inner, pi, sin)
# Get PETSc int and scalar types
complex_mode = True if np.dtype(PETSc.ScalarType).kind == 'c' else False
# Create mesh and finite element
NX = 50
NY = 100
mesh = create_unit_square(MPI.COMM_WORLD, NX, NY)
V = fem.VectorFunctionSpace(mesh, ("CG", 1))
def dirichletboundary(x):
return np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1))
# Create Dirichlet boundary condition
facets = locate_entities_boundary(mesh, 1, dirichletboundary)
topological_dofs = fem.locate_dofs_topological(V, 1, facets)
zero = np.array([0, 0], dtype=PETSc.ScalarType)
bc = fem.dirichletbc(zero, topological_dofs, V)
bcs = [bc]
def periodic_boundary(x):
return np.isclose(x[0], 1)
def periodic_relation(x):
out_x = np.zeros(x.shape)
out_x[0] = 1 - x[0]
out_x[1] = x[1]
out_x[2] = x[2]
return out_x
with Timer("~PERIODIC: Initialize MPC"):
mpc = MultiPointConstraint(V)
mpc.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_relation, bcs)
mpc.finalize()
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(u), grad(v)) * dx
x = SpatialCoordinate(mesh)
dx_ = x[0] - 0.9
dy_ = x[1] - 0.5
f = as_vector((x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp(-(dx_ * dx_ + dy_ * dy_) / 0.02), 0.3 * x[1]))
rhs = inner(f, v) * dx
# Setup MPC system
with Timer("~PERIODIC: Initialize varitional problem"):
problem = LinearProblem(a, rhs, mpc, bcs=bcs)
solver = problem.solver
# Give PETSc solver options a unique prefix
solver_prefix = "dolfinx_mpc_solve_{}".format(id(solver))
solver.setOptionsPrefix(solver_prefix)
petsc_options: dict[str, Union[str, int, float]]
if complex_mode:
petsc_options = {"ksp_type": "preonly", "pc_type": "lu"}
else:
petsc_options = {"ksp_type": "cg", "ksp_rtol": 1e-6, "pc_type": "hypre", "pc_hypre_type": "boomeramg",
"pc_hypre_boomeramg_max_iter": 1, "pc_hypre_boomeramg_cycle_type": "v" # ,
# "pc_hypre_boomeramg_print_statistics": 1
}
# Set PETSc options
opts = PETSc.Options()
opts.prefixPush(solver_prefix)
if petsc_options is not None:
for k, v in petsc_options.items():
opts[k] = v
opts.prefixPop()
solver.setFromOptions()
with Timer("~PERIODIC: Assemble and solve MPC problem"):
uh = problem.solve()
# solver.view()
it = solver.getIterationNumber()
print("Constrained solver iterations {0:d}".format(it))
# Write solution to file
uh.name = "u_mpc"
outfile = XDMFFile(MPI.COMM_WORLD, "results/demo_periodic_geometrical.xdmf", "w")
outfile.write_mesh(mesh)
outfile.write_function(uh)
print("----Verification----")
# --------------------VERIFICATION-------------------------
bilinear_form = fem.form(a)
A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
A_org.assemble()
linear_form = fem.form(rhs)
L_org = fem.petsc.assemble_vector(linear_form)
fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
fem.petsc.set_bc(L_org, bcs)
solver.setOperators(A_org)
u_ = fem.Function(V)
solver.solve(L_org, u_.vector)
it = solver.getIterationNumber()
print("Unconstrained solver iterations {0:d}".format(it))
u_.x.scatter_forward()
u_.name = "u_unconstrained"
outfile.write_function(u_)
root = 0
comm = mesh.comm
with Timer("~Demo: Verification"):
dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem._A, mpc, root=root)
dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem._b, mpc, root=root)
# Gather LHS, RHS and solution on one process
A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.vector, root=root)
if MPI.COMM_WORLD.rank == root:
KTAK = K.T * A_csr * K
reduced_L = K.T @ L_np
# Solve linear system
d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
# Back substitution to full solution vector
uh_numpy = K @ d
assert np.allclose(uh_numpy, u_mpc)
list_timings(MPI.COMM_WORLD, [TimingType.wall])
|