File: test.py

package info (click to toggle)
dolfinx-mpc 0.5.0.post0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,112 kB
  • sloc: python: 5,998; cpp: 5,196; makefile: 67
file content (254 lines) | stat: -rw-r--r-- 9,616 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (C) 2021 Jørgen Schartum Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT

__all__ = ["gather_PETScVector", "gather_PETScMatrix", "compare_mpc_lhs", "compare_mpc_rhs",
           "gather_transformation_matrix", "compare_CSR"]

import pytest
import numpy as np
from mpi4py import MPI
from petsc4py import PETSc
import scipy.sparse
import dolfinx_mpc
import dolfinx.common


@pytest.fixture
def get_assemblers(request):
    """
    Get eiher numba assembler or C++ assembler depending on the request
    """
    if request.param == "numba":
        try:
            import numba  # noqa: F401
        except ModuleNotFoundError:
            pytest.skip('Numba not installed')
        from dolfinx_mpc.numba import assemble_matrix, assemble_vector
        return (assemble_matrix, assemble_vector)
    elif request.param == "C++":
        from dolfinx_mpc import assemble_matrix, assemble_vector
        return (assemble_matrix, assemble_vector)
    else:
        raise RuntimeError(f"Undefined assembler type: {request.param}.\n"
                           + "Options are 'numba' or 'C++'")


def _gather_slaves_global(constraint):
    """
    Given a multi point constraint, return slaves for all processors with global dof numbering
    """
    imap = constraint.function_space.dofmap.index_map
    num_local_slaves = constraint.num_local_slaves
    block_size = constraint.function_space.dofmap.index_map_bs
    _slaves = constraint.slaves
    if num_local_slaves > 0:
        slave_blocks = _slaves[:num_local_slaves] // block_size
        slave_rems = _slaves[:num_local_slaves] % block_size
        glob_slaves = imap.local_to_global(slave_blocks) * block_size + slave_rems
    else:
        glob_slaves = np.array([], dtype=np.int64)

    slaves = np.hstack(MPI.COMM_WORLD.allgather(glob_slaves))
    return slaves


def gather_constants(constraint, root=0):
    """
    Given a multi-point constraint, gather all constants
    """
    imap = constraint.index_map()
    constants = constraint._cpp_object.constants
    l_range = imap.local_range
    ranges = MPI.COMM_WORLD.gather(np.asarray(l_range, dtype=np.int64), root=root)
    g_consts = MPI.COMM_WORLD.gather(constants[:l_range[1] - l_range[0]], root=root)
    if MPI.COMM_WORLD.rank == root:
        block_size = constraint.function_space().dofmap.index_map_bs
        global_consts = np.zeros(imap.size_global * block_size, dtype=PETSc.ScalarType)
        for (r, vals) in zip(ranges, g_consts):
            global_consts[r[0]:r[1]] = vals
        return global_consts
    else:
        return


def gather_transformation_matrix(constraint, root=0):
    """
    Creates the transformation matrix K (dim x dim-len(slaves)) for a given MPC
    and gathers it as a scipy CSR matrix on process 'root'.

    Example:

    For dim=3, where:
      u_1 = alpha u_0 + beta u_2

    Input:
      slaves = [1]
      masters = [0, 2]
      coeffs = [alpha, beta]
      offsets = [0, 1]

    Output:
      K = [[1,0], [alpha beta], [0,1]]
    """
    # Gather slaves from all procs
    V = constraint.V
    imap = constraint.function_space.dofmap.index_map
    block_size = V.dofmap.index_map_bs
    num_local_slaves = constraint.num_local_slaves
    # Gather all global_slaves
    slaves = constraint.slaves[:num_local_slaves]
    if num_local_slaves > 0:
        local_blocks = slaves // block_size
        local_rems = slaves % block_size
        glob_slaves = imap.local_to_global(local_blocks) * block_size + local_rems
    else:
        glob_slaves = np.array([], dtype=np.int64)
    all_slaves = np.hstack(MPI.COMM_WORLD.allgather(glob_slaves))
    masters = constraint.masters.array
    master_blocks = masters // block_size
    master_rems = masters % block_size
    coeffs = constraint.coefficients()[0]
    offsets = constraint.masters.offsets
    # Create sparse K matrix
    K_val, rows, cols = [], [], []

    # Add local contributions to K from local slaves
    for slave, global_slave in zip(slaves, glob_slaves):
        masters_index = (imap.local_to_global(master_blocks[offsets[slave]: offsets[slave + 1]])
                         * block_size + master_rems[offsets[slave]: offsets[slave + 1]])
        coeffs_index = coeffs[offsets[slave]: offsets[slave + 1]]
        # If we have a simply equality constraint (dirichletbc)
        if len(masters_index) > 0:
            for master, coeff in zip(masters_index, coeffs_index):
                count = sum(master > all_slaves)
                K_val.append(coeff)
                rows.append(global_slave)
                cols.append(master - count)
        else:
            K_val.append(1)
            count = sum(global_slave > all_slaves)
            rows.append(global_slave)
            cols.append(global_slave - count)

    # Add identity for all dofs on diagonal
    l_range = V.dofmap.index_map.local_range
    global_dofs = np.arange(l_range[0] * block_size, l_range[1] * block_size)
    is_slave = np.isin(global_dofs, glob_slaves)
    for i, dof in enumerate(global_dofs):
        if not is_slave[i]:
            K_val.append(1)
            rows.append(dof)
            cols.append(dof - sum(dof > all_slaves))

    # Gather K to root
    K_vals = MPI.COMM_WORLD.gather(np.asarray(K_val, dtype=PETSc.ScalarType), root=root)
    rows_g = MPI.COMM_WORLD.gather(np.asarray(rows, dtype=np.int64), root=root)
    cols_g = MPI.COMM_WORLD.gather(np.asarray(cols, dtype=np.int64), root=root)

    if MPI.COMM_WORLD.rank == root:
        K_sparse = scipy.sparse.coo_matrix((np.hstack(K_vals), (np.hstack(rows_g), np.hstack(cols_g)))).tocsr()
        return K_sparse


def petsc_to_local_CSR(A: PETSc.Mat, mpc: dolfinx_mpc.MultiPointConstraint):
    """
    Convert a PETSc matrix to a local CSR matrix (scipy) including ghost entries
    """
    global_indices = np.asarray(mpc.function_space.dofmap.index_map.global_indices(), dtype=PETSc.IntType)
    sort_index = np.argsort(global_indices)
    is_A = PETSc.IS().createGeneral(global_indices[sort_index])
    A_loc = A.createSubMatrices(is_A)[0]
    ai, aj, av = A_loc.getValuesCSR()
    A_csr = scipy.sparse.csr_matrix((av, aj, ai))
    return A_csr[global_indices[:, None], global_indices]


def gather_PETScMatrix(A: PETSc.Mat, root=0) -> scipy.sparse.csr_matrix:
    """
    Given a distributed PETSc matrix, gather in on process 'root' in
    a scipy CSR matrix
    """
    ai, aj, av = A.getValuesCSR()
    aj_all = MPI.COMM_WORLD.gather(aj, root=root)  # type: ignore
    av_all = MPI.COMM_WORLD.gather(av, root=root)  # type: ignore
    ai_all = MPI.COMM_WORLD.gather(ai, root=root)  # type: ignore
    if MPI.COMM_WORLD.rank == root:
        ai_cum = [0]
        for ai in ai_all:  # type: ignore
            offsets = ai[1:] + ai_cum[-1]
            ai_cum.extend(offsets)
        return scipy.sparse.csr_matrix(
            (np.hstack(av_all), np.hstack(aj_all), ai_cum), shape=A.getSize())  # type: ignore


def gather_PETScVector(vector: PETSc.Vec, root=0) -> np.ndarray:
    """
    Gather a PETScVector from different processors on
    process 'root' as an numpy array
    """
    numpy_vec = np.zeros(vector.size, dtype=vector.array.dtype)
    l_min = vector.owner_range[0]
    l_max = vector.owner_range[1]
    numpy_vec[l_min: l_max] += vector.array
    return np.asarray(sum(MPI.COMM_WORLD.allgather(numpy_vec)))


def compare_CSR(A: scipy.sparse.csr_matrix, B: scipy.sparse.csr_matrix, atol=1e-10):
    """ Compare CSR matrices A and B """
    diff = np.abs(A - B)
    assert diff.max() < atol


def compare_mpc_lhs(A_org: PETSc.Mat, A_mpc: PETSc.Mat,
                    mpc: dolfinx_mpc.MultiPointConstraint, root: int = 0):
    """
    Compare an unmodified matrix for the problem with the one assembled with a
    multi point constraint.

    The unmodified matrix is multiplied with K^T A K, where K is the global transformation matrix.
    """
    timer = dolfinx.common.Timer("~MPC: Compare matrices")
    comm = mpc.V.mesh.comm
    V = mpc.V
    assert root < comm.size

    K = gather_transformation_matrix(mpc, root=root)
    A_csr = gather_PETScMatrix(A_org, root=root)

    # Get global slaves
    glob_slaves = _gather_slaves_global(mpc)
    A_mpc_csr = gather_PETScMatrix(A_mpc, root=root)
    if MPI.COMM_WORLD.rank == root:
        KTAK = K.T * A_csr * K

        # Remove identity rows of MPC matrix
        all_cols = np.arange(V.dofmap.index_map.size_global * V.dofmap.index_map_bs)

        cols_except_slaves = np.flatnonzero(np.isin(all_cols, glob_slaves, invert=True).astype(np.int32))
        mpc_without_slaves = A_mpc_csr[cols_except_slaves[:, None], cols_except_slaves]

        # Compute difference
        compare_CSR(KTAK, mpc_without_slaves)

    timer.stop()


def compare_mpc_rhs(b_org: PETSc.Vec, b: PETSc.Vec, constraint: dolfinx_mpc.MultiPointConstraint, root: int = 0):
    """
    Compare an unconstrained RHS with an MPC rhs.
    """
    glob_slaves = _gather_slaves_global(constraint)
    b_org_np = gather_PETScVector(b_org, root=root)
    b_np = gather_PETScVector(b, root=root)
    K = gather_transformation_matrix(constraint, root=root)
    # constants = gather_constants(constraint)
    comm = constraint.V.mesh.comm
    if comm.rank == root:
        reduced_b = K.T @ b_org_np  # - constants for RHS mpc
        all_cols = np.arange(constraint.V.dofmap.index_map.size_global * constraint.V.dofmap.index_map_bs)
        cols_except_slaves = np.flatnonzero(np.isin(all_cols, glob_slaves, invert=True).astype(np.int32))
        assert np.allclose(b_np[glob_slaves], 0)
        assert np.allclose(b_np[cols_except_slaves], reduced_b)