1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
|
// Copyright (C) 2020 Jorgen S. Dokken
//
// This file is part of DOLFINX_MPC
//
// SPDX-License-Identifier: MIT
#pragma once
#include "utils.h"
#include <dolfinx/fem/Function.h>
#include <dolfinx/fem/FunctionSpace.h>
#include <dolfinx/mesh/MeshTags.h>
#include <petscsys.h>
namespace impl
{
/// Create bounding box tree (of cells) based on a mesh tag and a given set of
/// markers in the tag. This means that for a given set of facets, we compute
/// the bounding box tree of the cells connected to the facets
/// @param[in] mesh The mesh
/// @param[in] meshtags The meshtags for a set of entities
/// @param[in] marker The value in meshtags to extract entities for
/// @param[in] padding How much to pad the boundingboxtree
/// @returns A bounding box tree of the cells connected to the entities
template <std::floating_point U>
dolfinx::geometry::BoundingBoxTree<U>
create_boundingbox_tree(const dolfinx::mesh::Mesh<U>& mesh,
const dolfinx::mesh::MeshTags<std::int32_t>& meshtags,
std::int32_t marker, double padding)
{
assert(mesh.topology() == meshtags.topology());
const std::int32_t tdim = mesh.topology()->dim();
int dim = meshtags.dim();
auto entity_to_cell = mesh.topology()->connectivity(dim, tdim);
assert(entity_to_cell);
// Find all cells connected to master facets for collision detection
std::int32_t num_local_cells = mesh.topology()->index_map(tdim)->size_local();
const std::vector<std::int32_t> facets = meshtags.find(marker);
std::vector<std::int32_t> cells = dolfinx::mesh::compute_incident_entities(
*mesh.topology(), facets, dim, tdim);
dolfinx::geometry::BoundingBoxTree<U> bb_tree(mesh, tdim, cells, padding);
return bb_tree;
}
/// Compute contributions to slip constrain from master side (local to process)
/// @param[in] local_rems List containing which block each slave dof is in
/// @param[in] local_colliding_cell List with one-to-one correspondes to a cell
/// that the block is colliding with
/// @param[in] normals The normals at each slave dofs
/// @param[in] V the function space
/// @param[in] tabulated_basis_values The basis values tabulated for the given
/// cells at the given coordinates
/// @returns The mpc data (exluding slave indices)
template <typename T, std::floating_point U>
dolfinx_mpc::mpc_data<T> compute_master_contributions(
std::span<const std::int32_t> local_rems,
std::span<const std::int32_t> local_colliding_cell,
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
U, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent, 3>>
normals,
const dolfinx::fem::FunctionSpace<U>& V,
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
U, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
tabulated_basis_values)
{
const double tol = 1e-6;
auto mesh = V.mesh();
const std::int32_t block_size = V.dofmap()->index_map_bs();
std::shared_ptr<const dolfinx::common::IndexMap> imap = V.dofmap()->index_map;
const int bs = V.dofmap()->index_map_bs();
const std::int32_t size_local = imap->size_local();
MPI_Comm comm = mesh->comm();
int rank = -1;
MPI_Comm_rank(comm, &rank);
// Count number of masters for in local contribution if found, else add to
// array that is communicated to other processes
const std::size_t num_slaves_local = local_rems.size();
std::vector<std::int32_t> num_masters_local(num_slaves_local, 0);
assert(num_slaves_local == local_colliding_cell.size());
for (std::size_t i = 0; i < num_slaves_local; ++i)
{
if (const std::int32_t cell = local_colliding_cell[i]; cell != -1)
{
auto cell_blocks = V.dofmap()->cell_dofs(cell);
for (std::size_t j = 0; j < cell_blocks.size(); ++j)
{
for (int b = 0; b < bs; b++)
{
// NOTE: Assuming 0 value size
if (const T val = normals(i, b) / normals(i, local_rems[i])
* tabulated_basis_values(i, j);
std::abs(val) > tol)
{
num_masters_local[i]++;
}
}
}
}
}
std::vector<std::int32_t> masters_offsets(num_slaves_local + 1);
masters_offsets[0] = 0;
std::inclusive_scan(num_masters_local.begin(), num_masters_local.end(),
masters_offsets.begin() + 1);
std::vector<std::int64_t> masters_other_side(masters_offsets.back());
std::vector<T> coefficients_other_side(masters_offsets.back());
std::vector<std::int32_t> owners_other_side(masters_offsets.back());
std::span<const int> ghost_owners = imap->owners();
// Temporary array holding global indices
std::vector<std::int64_t> global_blocks;
// Reuse num_masters_local for insertion
std::ranges::fill(num_masters_local, 0);
for (std::size_t i = 0; i < num_slaves_local; ++i)
{
if (const std::int32_t cell = local_colliding_cell[i]; cell != -1)
{
auto cell_blocks = V.dofmap()->cell_dofs(cell);
global_blocks.resize(cell_blocks.size());
imap->local_to_global(cell_blocks, global_blocks);
// Compute coefficients for each master
for (std::size_t j = 0; j < cell_blocks.size(); ++j)
{
const std::int32_t cell_block = cell_blocks[j];
for (int b = 0; b < bs; b++)
{
// NOTE: Assuming 0 value size
if (const T val = normals(i, b) / normals(i, local_rems[i])
* tabulated_basis_values(i, j);
std::abs(val) > tol)
{
const std::int32_t m_pos
= masters_offsets[i] + num_masters_local[i];
masters_other_side[m_pos] = global_blocks[j] * block_size + b;
coefficients_other_side[m_pos] = val;
owners_other_side[m_pos]
= cell_block < size_local
? rank
: ghost_owners[cell_block - size_local];
num_masters_local[i]++;
}
}
}
}
}
// Do not add in slaves data to mpc_data, as we allready know the slaves
dolfinx_mpc::mpc_data<T> mpc_local;
mpc_local.masters = masters_other_side;
mpc_local.coeffs = coefficients_other_side;
mpc_local.offsets = masters_offsets;
mpc_local.owners = owners_other_side;
return mpc_local;
}
/// Find slave dofs topologically
/// @param[in] V The function space
/// @param[in] meshtags The meshtags for the set of entities
/// @param[in] marker The marker values in the mesh tag
/// @returns The degrees of freedom located on all entities of V that are
/// tagged with the marker
template <std::floating_point U>
std::vector<std::int32_t>
locate_slave_dofs(const dolfinx::fem::FunctionSpace<U>& V,
const dolfinx::mesh::MeshTags<std::int32_t>& meshtags,
std::int32_t slave_marker)
{
const std::int32_t edim = meshtags.dim();
// Extract slave_facets
std::vector<std::int32_t> slave_facets;
slave_facets.reserve(meshtags.indices().size());
for (std::size_t i = 0; i < meshtags.indices().size(); ++i)
if (meshtags.values()[i] == slave_marker)
slave_facets.push_back(meshtags.indices()[i]);
// Find all dofs on slave facets
if (V.element()->num_sub_elements() == 0)
{
std::vector<std::int32_t> slave_dofs
= dolfinx::fem::locate_dofs_topological(
*V.mesh()->topology(), *V.dofmap(), edim, std::span(slave_facets));
return slave_dofs;
}
else
{
// NOTE: Assumption that we are only working with vector spaces, which is
// ordered as xyz,xyzgeometry
auto V_sub = V.sub({0});
auto [V0, map] = V_sub.collapse();
auto sub_dofmap = V_sub.dofmap();
std::array<std::vector<std::int32_t>, 2> slave_dofs
= dolfinx::fem::locate_dofs_topological(*V.mesh()->topology(),
{*sub_dofmap, *V0.dofmap()},
edim, std::span(slave_facets));
return slave_dofs[0];
}
}
/// Compute contributions to slip MPC from slave facet side, i.e. dot(u,
/// n)|_slave_facet
/// @param[in] local_slaves The slave dofs (local index)
/// @param[in] local_slave_blocks The corresponding blocks for each slave
/// @param[in] normals The normal vectors, shape (local_slaves.size(), 3).
/// Storage flattened row major.
/// @param[in] imap The index map
/// @param[in] block_size The block size of the index map
/// @param[in] rank The rank of current process
/// @returns A mpc_data struct with slaves, masters, coeffs and owners
template <typename T, std::floating_point U>
dolfinx_mpc::mpc_data<T> compute_block_contributions(
const std::vector<std::int32_t>& local_slaves,
const std::vector<std::int32_t>& local_slave_blocks,
std::span<const U> normals,
const std::shared_ptr<const dolfinx::common::IndexMap> imap,
std::int32_t block_size, int rank)
{
assert(normals.size() % 3 == 0);
assert(normals.size() / 3 == local_slave_blocks.size());
std::vector<std::int32_t> dofs(block_size);
// Count number of masters for each local slave (only contributions from)
// the same block as the actual slave dof
std::vector<std::int32_t> num_masters_in_cell(local_slaves.size());
for (std::size_t i = 0; i < local_slaves.size(); ++i)
{
std::iota(dofs.begin(), dofs.end(), local_slave_blocks[i] * block_size);
const std::int32_t local_slave = local_slaves[i];
for (std::int32_t j = 0; j < block_size; ++j)
if ((dofs[j] != local_slave) && std::abs(normals[3 * i + j]) > 1e-6)
num_masters_in_cell[i]++;
}
std::vector<std::int32_t> masters_offsets(local_slaves.size() + 1);
masters_offsets[0] = 0;
std::inclusive_scan(num_masters_in_cell.begin(), num_masters_in_cell.end(),
masters_offsets.begin() + 1);
// Reuse num masters as fill position array
std::ranges::fill(num_masters_in_cell, 0);
// Compute coeffs and owners for local cells
std::vector<std::int64_t> global_slave_blocks(local_slaves.size());
imap->local_to_global(local_slave_blocks, global_slave_blocks);
std::vector<std::int64_t> masters_in_cell(masters_offsets.back());
std::vector<T> coefficients_in_cell(masters_offsets.back());
const std::vector<std::int32_t> owners_in_cell(masters_offsets.back(), rank);
for (std::size_t i = 0; i < local_slaves.size(); ++i)
{
const std::int32_t local_slave = local_slaves[i];
std::iota(dofs.begin(), dofs.end(), local_slave_blocks[i] * block_size);
auto local_max = std::ranges::find(dofs, local_slave);
const auto max_index = std::distance(dofs.begin(), local_max);
for (std::int32_t j = 0; j < block_size; j++)
{
if ((dofs[j] != local_slave) && std::abs(normals[3 * i + j]) > 1e-6)
{
T coeff_j = -normals[3 * i + j] / normals[3 * i + max_index];
coefficients_in_cell[masters_offsets[i] + num_masters_in_cell[i]]
= coeff_j;
masters_in_cell[masters_offsets[i] + num_masters_in_cell[i]]
= global_slave_blocks[i] * block_size + j;
num_masters_in_cell[i]++;
}
}
}
dolfinx_mpc::mpc_data<T> mpc;
mpc.slaves = local_slaves;
mpc.masters = masters_in_cell;
mpc.coeffs = coefficients_in_cell;
mpc.offsets = masters_offsets;
mpc.owners = owners_in_cell;
return mpc;
}
/// Concatatenate to mpc_data structures with same number of offsets
template <typename T>
dolfinx_mpc::mpc_data<T> concatenate(dolfinx_mpc::mpc_data<T>& mpc0,
dolfinx_mpc::mpc_data<T>& mpc1)
{
assert(mpc0.offsets.size() == mpc1.offsets.size());
std::vector<std::int32_t>& offsets0 = mpc0.offsets;
std::vector<std::int32_t>& offsets1 = mpc1.offsets;
std::vector<std::int64_t>& masters0 = mpc0.masters;
std::vector<std::int64_t>& masters1 = mpc1.masters;
std::vector<T>& coeffs0 = mpc0.coeffs;
std::vector<T>& coeffs1 = mpc1.coeffs;
std::vector<std::int32_t>& owners0 = mpc0.owners;
std::vector<std::int32_t>& owners1 = mpc1.owners;
const std::size_t num_slaves = offsets0.size() - 1;
// Concatenate the two constraints as one
std::vector<std::int32_t> num_masters_per_slave(num_slaves, 0);
for (std::size_t i = 0; i < num_slaves; i++)
{
num_masters_per_slave[i]
= offsets0[i + 1] - offsets0[i] + offsets1[i + 1] - offsets1[i];
}
std::vector<std::int32_t> masters_offsets(offsets0.size());
masters_offsets[0] = 0;
std::inclusive_scan(num_masters_per_slave.begin(),
num_masters_per_slave.end(), masters_offsets.begin() + 1);
// Reuse num_masters_per_slave for indexing
std::ranges::fill(num_masters_per_slave, 0);
std::vector<std::int64_t> masters_out(masters_offsets.back());
std::vector<T> coefficients_out(masters_offsets.back());
std::vector<std::int32_t> owners_out(masters_offsets.back());
for (std::size_t i = 0; i < num_slaves; ++i)
{
for (std::int32_t j = offsets0[i]; j < offsets0[i + 1]; ++j)
{
masters_out[masters_offsets[i] + num_masters_per_slave[i]] = masters0[j];
coefficients_out[masters_offsets[i] + num_masters_per_slave[i]]
= coeffs0[j];
owners_out[masters_offsets[i] + num_masters_per_slave[i]] = owners0[j];
num_masters_per_slave[i]++;
}
for (std::int32_t j = offsets1[i]; j < offsets1[i + 1]; ++j)
{
masters_out[masters_offsets[i] + num_masters_per_slave[i]] = masters1[j];
coefficients_out[masters_offsets[i] + num_masters_per_slave[i]]
= coeffs1[j];
owners_out[masters_offsets[i] + num_masters_per_slave[i]] = owners1[j];
num_masters_per_slave[i]++;
}
}
// Structure storing mpc arrays
dolfinx_mpc::mpc_data<T> mpc;
mpc.masters = masters_out;
mpc.coeffs = coefficients_out;
mpc.owners = owners_out;
mpc.offsets = masters_offsets;
return mpc;
}
} // namespace impl
namespace dolfinx_mpc
{
/// Create a slip condition between two sets of facets
/// @param[in] V The mpc function space
/// @param[in] meshtags The meshtag
/// @param[in] slave_marker Tag for the first interface
/// @param[in] master_marker Tag for the other interface
/// @param[in] nh Function containing the normal at the slave marker interface
/// @param[in] eps2 The tolerance for the squared distance to be considered a
/// collision
template <typename T, std::floating_point U>
mpc_data<T> create_contact_slip_condition(
const dolfinx::fem::FunctionSpace<U>& V,
const dolfinx::mesh::MeshTags<std::int32_t>& meshtags,
std::int32_t slave_marker, std::int32_t master_marker,
const dolfinx::fem::Function<T, U>& nh, const U eps2 = 1e-20)
{
dolfinx::common::Timer timer("~MPC: Create slip constraint");
std::shared_ptr<const mesh::Mesh<U>> mesh = V.mesh();
MPI_Comm comm = mesh->comm();
int rank = -1;
MPI_Comm_rank(comm, &rank);
// Extract some const information from function-space
const std::shared_ptr<const dolfinx::common::IndexMap> imap
= V.dofmap()->index_map;
assert(mesh->topology() == meshtags.topology());
const int tdim = mesh->topology()->dim();
const int gdim = mesh->geometry().dim();
const int fdim = tdim - 1;
const int block_size = V.dofmap()->index_map_bs();
std::int32_t size_local = V.dofmap()->index_map->size_local();
mesh->topology_mutable()->create_connectivity(fdim, tdim);
mesh->topology_mutable()->create_connectivity(tdim, tdim);
mesh->topology_mutable()->create_entity_permutations();
// Find all slave dofs and split them into locally owned and ghosted blocks
std::vector<std::int32_t> local_slave_blocks;
{
std::vector<std::int32_t> slave_dofs
= impl::locate_slave_dofs<U>(V, meshtags, slave_marker);
local_slave_blocks.reserve(slave_dofs.size());
std::ranges::for_each(slave_dofs,
[&local_slave_blocks, bs = block_size,
sl = size_local](const std::int32_t dof)
{
std::div_t div = std::div(dof, bs);
if (div.quot < sl)
local_slave_blocks.push_back(div.quot);
});
}
// Data structures to hold information about slave data local to process
std::vector<std::int32_t> local_slaves(local_slave_blocks.size());
std::vector<std::int32_t> local_rems(local_slave_blocks.size());
dolfinx_mpc::mpc_data<T> mpc_local;
// Find all local contributions to MPC, meaning:
// 1. Degrees of freedom from the same block as the slave
// 2. Degrees of freedom from the other interface
// Helper function
// Determine component of each block has the largest normal value, and use
// it as slave dofs to avoid zero division in constraint
// Note that this function casts the normal array from being potentially
// complex to real valued
std::vector<std::int32_t> dofs(block_size);
std::span<const T> normal_array = nh.x()->array();
const auto largest_normal_component
= [&dofs, block_size, &normal_array, gdim](const std::int32_t block,
std::span<U, 3> normal)
{
std::iota(dofs.begin(), dofs.end(), block * block_size);
for (int j = 0; j < gdim; ++j)
normal[j] = std::real(normal_array[dofs[j]]);
U norm = std::sqrt(normal[0] * normal[0] + normal[1] * normal[1]
+ normal[2] * normal[2]);
std::ranges::for_each(normal,
[norm](auto& n) { return std::abs(n / norm); });
return std::distance(
normal.begin(),
std::ranges::max_element(normal, [](T a, T b)
{ return std::norm(a) < std::norm(b); }));
};
// Determine which dof in local slave block is the actual slave
std::vector<U> normals(3 * local_slave_blocks.size(), 0);
assert(block_size == gdim);
for (std::size_t i = 0; i < local_slave_blocks.size(); ++i)
{
const std::int32_t slave = local_slave_blocks[i];
const auto block = largest_normal_component(
slave, std::span<U, 3>(std::next(normals.begin(), 3 * i), 3));
local_slaves[i] = block_size * slave + block;
local_rems[i] = block;
}
// Compute local contributions to constraint using helper function
// i.e. compute dot(u, n) on slave side
mpc_data<T> mpc_in_cell = impl::compute_block_contributions<T, U>(
local_slaves, local_slave_blocks, normals, imap, block_size, rank);
dolfinx::geometry::BoundingBoxTree bb_tree = impl::create_boundingbox_tree(
*mesh, meshtags, master_marker, std::sqrt(eps2));
// Compute contributions on other side local to process
mpc_data<T> mpc_master_local;
// Create map from slave dof blocks to a cell containing them
std::vector<std::int32_t> slave_cells = dolfinx_mpc::create_block_to_cell_map(
*mesh->topology(), *V.dofmap(), local_slave_blocks);
std::vector<U> slave_coordinates;
std::array<std::size_t, 2> coord_shape;
{
std::tie(slave_coordinates, coord_shape)
= dolfinx_mpc::tabulate_dof_coordinates<U>(V, local_slave_blocks,
slave_cells);
std::vector<std::int32_t> local_cell_collisions
= dolfinx_mpc::find_local_collisions<U>(*mesh, bb_tree,
slave_coordinates, eps2);
auto [basis, basis_shape] = dolfinx_mpc::evaluate_basis_functions<U>(
V, slave_coordinates, local_cell_collisions);
assert(basis_shape.back() == 1);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
U, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
basis_span(basis.data(), basis_shape[0], basis_shape[1]);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
U, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent, 3>>
normal_span(normals.data(), local_slave_blocks.size(), 3);
mpc_master_local = impl::compute_master_contributions<T, U>(
local_rems, local_cell_collisions, normal_span, V, basis_span);
}
// // Find slave indices were contributions are not found on the process
std::vector<std::int32_t>& l_offsets = mpc_master_local.offsets;
std::vector<std::int32_t> slave_indices_remote;
slave_indices_remote.reserve(local_rems.size());
for (std::size_t i = 0; i < local_rems.size(); i++)
{
if (l_offsets[i + 1] - l_offsets[i] == 0)
slave_indices_remote.push_back((int)i);
}
// Structure storing mpc arrays mpc_local
mpc_local = impl::concatenate(mpc_in_cell, mpc_master_local);
// If serial, we gather the resulting mpc data as one constraint
if (int mpi_size = dolfinx::MPI::size(comm); mpi_size == 1)
{
if (!slave_indices_remote.empty())
{
throw std::runtime_error(
"No masters found on contact surface (when executed in serial). "
"Please make sure that the surfaces are in contact, or increase the "
"tolerance eps2.");
}
// Serial assumptions
mpc_local.slaves = local_slaves;
return mpc_local;
}
// Create slave_dofs->master facets and master->slave dofs neighborhood comms
const bool has_slave = !local_slave_blocks.empty();
std::array<MPI_Comm, 2> neighborhood_comms
= create_neighborhood_comms(comm, meshtags, has_slave, master_marker);
// Get the slave->master recv from and send to ranks
int indegree(-1);
int outdegree(-2);
int weighted(-1);
MPI_Dist_graph_neighbors_count(neighborhood_comms[0], &indegree, &outdegree,
&weighted);
// Convert slaves missing master contributions to global index
// and prepare data (coordinates and normals) to send to other procs
const std::array<std::size_t, 2> send_shape
= {slave_indices_remote.size(), 3};
std::vector<U> coordinates_send(send_shape.front() * send_shape.back());
std::vector<U> normals_send(send_shape.front() * send_shape.back());
std::vector<std::int32_t> send_rems(slave_indices_remote.size());
for (std::size_t i = 0; i < slave_indices_remote.size(); ++i)
{
const std::int32_t slave_idx = slave_indices_remote[i];
send_rems[i] = local_rems[slave_idx];
std::ranges::copy_n(std::next(slave_coordinates.begin(), 3 * slave_idx), 3,
std::next(coordinates_send.begin(), 3 * i));
std::ranges::copy_n(std::next(normals.begin(), 3 * slave_idx), 3,
std::next(normals_send.begin(), 3 * i));
}
// Figure out how much data to receive from each neighbor
const std::size_t out_collision_slaves = slave_indices_remote.size();
std::vector<std::int32_t> num_slaves_recv(indegree + 1);
MPI_Neighbor_allgather(
&out_collision_slaves, 1, dolfinx::MPI::mpi_type<std::int32_t>(),
num_slaves_recv.data(), 1, dolfinx::MPI::mpi_type<std::int32_t>(),
neighborhood_comms[0]);
num_slaves_recv.pop_back();
// Compute displacements for data to receive
std::vector<int> disp(indegree + 1, 0);
std::partial_sum(num_slaves_recv.begin(), num_slaves_recv.end(),
disp.begin() + 1);
// Send data to neighbors and receive data
std::vector<std::int32_t> recv_rems(disp.back());
MPI_Neighbor_allgatherv(send_rems.data(), (int)send_rems.size(),
dolfinx::MPI::mpi_type<std::int32_t>(),
recv_rems.data(), num_slaves_recv.data(), disp.data(),
dolfinx::MPI::mpi_type<std::int32_t>(),
neighborhood_comms[0]);
// Multiply recv size by three to accommodate vector coordinates and
// function data
std::vector<std::int32_t> num_slaves_recv3;
num_slaves_recv3.reserve(indegree);
std::ranges::transform(num_slaves_recv, std::back_inserter(num_slaves_recv3),
[](std::int32_t num_slaves)
{ return 3 * num_slaves; });
std::vector<int> disp3(indegree + 1, 0);
std::partial_sum(num_slaves_recv3.begin(), num_slaves_recv3.end(),
disp3.begin() + 1);
// Send slave normal and coordinate to neighbors
std::vector<U> recv_coords(disp.back() * 3);
MPI_Neighbor_allgatherv(coordinates_send.data(), (int)coordinates_send.size(),
dolfinx::MPI::mpi_type<U>(), recv_coords.data(),
num_slaves_recv3.data(), disp3.data(),
dolfinx::MPI::mpi_type<U>(), neighborhood_comms[0]);
std::vector<U> slave_normals(disp.back() * 3);
MPI_Neighbor_allgatherv(normals_send.data(), (int)normals_send.size(),
dolfinx::MPI::mpi_type<U>(), slave_normals.data(),
num_slaves_recv3.data(), disp3.data(),
dolfinx::MPI::mpi_type<U>(), neighborhood_comms[0]);
int err0 = MPI_Comm_free(&neighborhood_comms[0]);
dolfinx::MPI::check_error(comm, err0);
// Compute off-process contributions
mpc_data<T> remote_data;
{
std::vector<std::int32_t> remote_cell_collisions
= dolfinx_mpc::find_local_collisions<U>(*mesh, bb_tree, recv_coords,
eps2);
auto [recv_basis_values, shape] = dolfinx_mpc::evaluate_basis_functions<U>(
V, recv_coords, remote_cell_collisions);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
U, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
basis_span(recv_basis_values.data(), shape[0], shape[1]);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
U, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent, 3>>
normal_span(slave_normals.data(), disp.back(), 3);
remote_data = impl::compute_master_contributions<T, U>(
recv_rems, remote_cell_collisions, normal_span, V, basis_span);
}
// Get info about reverse communicator
auto [src_ranks_rev, dest_ranks_rev]
= dolfinx_mpc::compute_neighborhood(neighborhood_comms[1]);
const std::size_t indegree_rev = src_ranks_rev.size();
// Count number of masters found on the process and convert the offsets
// to be per process
std::vector<std::int32_t> num_collision_masters(indegree + 1, 0);
std::vector<int> num_out_offsets;
num_out_offsets.reserve(indegree);
std::ranges::transform(num_slaves_recv, std::back_inserter(num_out_offsets),
[](std::int32_t num_slaves)
{ return num_slaves + 1; });
const std::int32_t num_offsets
= std::accumulate(num_out_offsets.begin(), num_out_offsets.end(), 0);
std::vector<std::int32_t> offsets_remote(num_offsets);
std::int32_t counter = 0;
for (std::int32_t i = 0; i < indegree; ++i)
{
const std::int32_t first_pos = disp[i];
const std::int32_t first_offset = remote_data.offsets[first_pos];
num_collision_masters[i] += remote_data.offsets[disp[i + 1]] - first_offset;
offsets_remote[first_pos + counter++] = 0;
for (std::int32_t j = first_pos; j < disp[i + 1]; ++j)
offsets_remote[j + counter] = remote_data.offsets[j + 1] - first_offset;
}
// Communicate number of incoming masters to each process after collision
// detection
std::vector<int> inc_num_collision_masters(indegree_rev + 1);
MPI_Neighbor_alltoall(num_collision_masters.data(), 1, MPI_INT,
inc_num_collision_masters.data(), 1, MPI_INT,
neighborhood_comms[1]);
inc_num_collision_masters.pop_back();
num_collision_masters.pop_back();
// Create displacement vector for masters and coefficients
std::vector<int> disp_inc_masters(indegree_rev + 1, 0);
std::partial_sum(inc_num_collision_masters.begin(),
inc_num_collision_masters.end(),
disp_inc_masters.begin() + 1);
// Compute send offsets for masters and coefficients
std::vector<int> send_disp_masters(indegree + 1, 0);
std::partial_sum(num_collision_masters.begin(), num_collision_masters.end(),
send_disp_masters.begin() + 1);
// Create displacement vector for incoming offsets
std::vector<int> inc_disp_offsets(indegree_rev + 1);
std::vector<int> num_inc_offsets(indegree_rev,
(int)slave_indices_remote.size() + 1);
std::partial_sum(num_inc_offsets.begin(), num_inc_offsets.end(),
inc_disp_offsets.begin() + 1);
// Compute send offsets for master offsets
std::vector<int> send_disp_offsets(indegree + 1, 0);
std::partial_sum(num_out_offsets.begin(), num_out_offsets.end(),
send_disp_offsets.begin() + 1);
// Get offsets for master dofs from remote process
std::vector<MPI_Request> requests(4);
std::vector<std::int32_t> remote_colliding_offsets(inc_disp_offsets.back());
MPI_Ineighbor_alltoallv(
offsets_remote.data(), num_out_offsets.data(), send_disp_offsets.data(),
dolfinx::MPI::mpi_type<std::int32_t>(), remote_colliding_offsets.data(),
num_inc_offsets.data(), inc_disp_offsets.data(),
dolfinx::MPI::mpi_type<std::int32_t>(), neighborhood_comms[1],
&requests[0]);
// Receive colliding masters and relevant data from other processor
std::vector<std::int64_t> remote_colliding_masters(disp_inc_masters.back());
MPI_Ineighbor_alltoallv(
remote_data.masters.data(), num_collision_masters.data(),
send_disp_masters.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
remote_colliding_masters.data(), inc_num_collision_masters.data(),
disp_inc_masters.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
neighborhood_comms[1], &requests[1]);
std::vector<T> remote_colliding_coeffs(disp_inc_masters.back());
MPI_Ineighbor_alltoallv(
remote_data.coeffs.data(), num_collision_masters.data(),
send_disp_masters.data(), dolfinx::MPI::mpi_type<T>(),
remote_colliding_coeffs.data(), inc_num_collision_masters.data(),
disp_inc_masters.data(), dolfinx::MPI::mpi_type<T>(),
neighborhood_comms[1], &requests[2]);
std::vector<std::int32_t> remote_colliding_owners(disp_inc_masters.back());
MPI_Ineighbor_alltoallv(
remote_data.owners.data(), num_collision_masters.data(),
send_disp_masters.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
remote_colliding_owners.data(), inc_num_collision_masters.data(),
disp_inc_masters.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
neighborhood_comms[1], &requests[3]);
// Wait for offsets to be sent
std::vector<MPI_Status> status(4);
MPI_Wait(&requests[0], &status[0]);
std::vector<std::int8_t> slave_found(slave_indices_remote.size(), false);
std::vector<std::int32_t> num_inc_masters(slave_indices_remote.size());
// Iterate through the processors and find one set of inputs per slave that
// was sent to the other processes
for (std::size_t i = 0; i < src_ranks_rev.size(); ++i)
{
[[maybe_unused]] const std::int32_t num_offsets_on_proc
= inc_disp_offsets[i + 1] - inc_disp_offsets[i];
assert(num_offsets_on_proc
== std::int32_t(slave_indices_remote.size()) + 1);
for (std::size_t c = 0; c < slave_indices_remote.size(); c++)
{
const std::int32_t slave_min
= remote_colliding_offsets[inc_disp_offsets[i] + c];
const std::int32_t slave_max
= remote_colliding_offsets[inc_disp_offsets[i] + c + 1];
if (const std::int32_t num_inc = slave_max - slave_min;
!(slave_found[c]) && (num_inc > 0))
{
slave_found[c] = true;
num_inc_masters[c] = num_inc;
}
}
}
if (auto not_found = std::ranges::find(slave_found, false);
not_found != slave_found.end())
{
std::runtime_error(
"Masters not found on contact surface with local search or remote "
"search. Consider running the code in serial to make sure that one can "
"detect the contact surface, or increase eps2.");
}
/// Wait for all communication to finish
MPI_Waitall(4, requests.data(), status.data());
int err1 = MPI_Comm_free(&neighborhood_comms[1]);
dolfinx::MPI::check_error(comm, err1);
// Move the masters, coeffs and owners from the input adjacency list
// to one where each node corresponds to an entry in slave_indices_remote
std::vector<std::int32_t> offproc_offsets(slave_indices_remote.size() + 1, 0);
std::partial_sum(num_inc_masters.begin(), num_inc_masters.end(),
offproc_offsets.begin() + 1);
std::vector<std::int64_t> offproc_masters(offproc_offsets.back());
std::vector<T> offproc_coeffs(offproc_offsets.back());
std::vector<std::int32_t> offproc_owners(offproc_offsets.back());
std::ranges::fill(slave_found, false);
for (std::size_t i = 0; i < src_ranks_rev.size(); ++i)
{
const std::int32_t proc_start = disp_inc_masters[i];
[[maybe_unused]] const std::int32_t num_offsets_on_proc
= inc_disp_offsets[i + 1] - inc_disp_offsets[i];
assert(num_offsets_on_proc
== std::int32_t(slave_indices_remote.size()) + 1);
for (std::size_t c = 0; c < slave_indices_remote.size(); c++)
{
assert(std::int32_t(remote_colliding_offsets.size())
> std::int32_t(inc_disp_offsets[i] + c));
assert(std::int32_t(remote_colliding_offsets.size())
> std::int32_t(inc_disp_offsets[i] + c + 1));
assert(std::int32_t(inc_disp_offsets[i] + c) < inc_disp_offsets[i + 1]);
const std::int32_t slave_min
= remote_colliding_offsets[inc_disp_offsets[i] + c];
const std::int32_t slave_max
= remote_colliding_offsets[inc_disp_offsets[i] + c + 1];
assert(c < slave_found.size());
if (!(slave_found[c]) && (slave_max - slave_min > 0))
{
slave_found[c] = true;
std::ranges::copy(
remote_colliding_masters.begin() + proc_start + slave_min,
remote_colliding_masters.begin() + proc_start + slave_max,
offproc_masters.begin() + offproc_offsets[c]);
std::ranges::copy(
remote_colliding_coeffs.begin() + proc_start + slave_min,
remote_colliding_coeffs.begin() + proc_start + slave_max,
offproc_coeffs.begin() + offproc_offsets[c]);
std::ranges::copy(
remote_colliding_owners.begin() + proc_start + slave_min,
remote_colliding_owners.begin() + proc_start + slave_max,
offproc_owners.begin() + offproc_offsets[c]);
}
}
}
// Merge local data with incoming data
// First count number of local masters
std::vector<std::int32_t>& masters_offsets = mpc_local.offsets;
std::vector<std::int64_t>& masters_out = mpc_local.masters;
std::vector<T>& coefficients_out = mpc_local.coeffs;
std::vector<std::int32_t>& owners_out = mpc_local.owners;
std::vector<std::int32_t> num_masters_per_slave(local_slaves.size(), 0);
for (std::size_t i = 0; i < local_slaves.size(); ++i)
num_masters_per_slave[i] += masters_offsets[i + 1] - masters_offsets[i];
// Then add the remote masters
for (std::size_t i = 0; i < slave_indices_remote.size(); ++i)
num_masters_per_slave[slave_indices_remote[i]]
+= offproc_offsets[i + 1] - offproc_offsets[i];
// Create new offset array
std::vector<std::int32_t> local_offsets(local_slaves.size() + 1, 0);
std::partial_sum(num_masters_per_slave.begin(), num_masters_per_slave.end(),
local_offsets.begin() + 1);
// Reuse num_masters_per_slave for input indices
std::vector<std::int64_t> local_masters(local_offsets.back());
std::vector<std::int32_t> local_owners(local_offsets.back());
std::vector<T> local_coeffs(local_offsets.back());
// Insert local contributions
{
std::vector<std::int32_t> loc_pos(local_slaves.size(), 0);
for (std::size_t i = 0; i < local_slaves.size(); ++i)
{
const std::int32_t master_min = masters_offsets[i];
const std::int32_t master_max = masters_offsets[i + 1];
std::ranges::copy(masters_out.begin() + master_min,
masters_out.begin() + master_max,
local_masters.begin() + local_offsets[i] + loc_pos[i]);
std::ranges::copy(coefficients_out.begin() + master_min,
coefficients_out.begin() + master_max,
local_coeffs.begin() + local_offsets[i] + loc_pos[i]);
std::ranges::copy(owners_out.begin() + master_min,
owners_out.begin() + master_max,
local_owners.begin() + local_offsets[i] + loc_pos[i]);
loc_pos[i] += master_max - master_min;
}
// Insert remote contributions
for (std::size_t i = 0; i < slave_indices_remote.size(); ++i)
{
const std::int32_t master_min = offproc_offsets[i];
const std::int32_t master_max = offproc_offsets[i + 1];
const std::int32_t slave_index = slave_indices_remote[i];
std::ranges::copy(offproc_masters.begin() + master_min,
offproc_masters.begin() + master_max,
local_masters.begin() + local_offsets[slave_index]
+ loc_pos[slave_index]);
std::ranges::copy(offproc_coeffs.begin() + master_min,
offproc_coeffs.begin() + master_max,
local_coeffs.begin() + local_offsets[slave_index]
+ loc_pos[slave_index]);
std::ranges::copy(offproc_owners.begin() + master_min,
offproc_owners.begin() + master_max,
local_owners.begin() + local_offsets[slave_index]
+ loc_pos[slave_index]);
loc_pos[slave_index] += master_max - master_min;
}
}
// Distribute ghost data
dolfinx_mpc::mpc_data ghost_data = dolfinx_mpc::distribute_ghost_data<T>(
local_slaves, local_masters, local_coeffs, local_owners,
num_masters_per_slave, *imap, block_size);
// Add ghost data to existing arrays
const std::vector<std::int32_t>& ghost_slaves = ghost_data.slaves;
local_slaves.insert(std::end(local_slaves), std::cbegin(ghost_slaves),
std::cend(ghost_slaves));
const std::vector<std::int64_t>& ghost_masters = ghost_data.masters;
local_masters.insert(std::end(local_masters), std::cbegin(ghost_masters),
std::cend(ghost_masters));
const std::vector<std::int32_t>& ghost_num = ghost_data.offsets;
num_masters_per_slave.insert(std::end(num_masters_per_slave),
std::cbegin(ghost_num), std::cend(ghost_num));
const std::vector<T>& ghost_coeffs = ghost_data.coeffs;
local_coeffs.insert(std::end(local_coeffs), std::cbegin(ghost_coeffs),
std::cend(ghost_coeffs));
const std::vector<std::int32_t>& ghost_owner_ranks = ghost_data.owners;
local_owners.insert(std::end(local_owners), std::cbegin(ghost_owner_ranks),
std::cend(ghost_owner_ranks));
// Compute offsets
std::vector<std::int32_t> offsets(num_masters_per_slave.size() + 1, 0);
std::partial_sum(num_masters_per_slave.begin(), num_masters_per_slave.end(),
offsets.begin() + 1);
dolfinx_mpc::mpc_data<T> output;
output.offsets = offsets;
output.masters = local_masters;
output.coeffs = local_coeffs;
output.owners = local_owners;
output.slaves = local_slaves;
return output;
}
/// Create a contact condition between two sets of facets
/// @param[in] The mpc function space
/// @param[in] meshtags The meshtag
/// @param[in] slave_marker Tag for the first interface
/// @param[in] master_marker Tag for the other interface
/// @param[in] eps2 The tolerance for the squared distance to be considered a
/// collision
/// @param[in] allow_missing_masters If true, the function will not throw an error if
/// a degree of freedom in the closure of the master entities does not have a corresponding set of slave degrees of freedom.
template <typename T, std::floating_point U>
mpc_data<T> create_contact_inelastic_condition(
const dolfinx::fem::FunctionSpace<U>& V,
dolfinx::mesh::MeshTags<std::int32_t> meshtags, std::int32_t slave_marker,
std::int32_t master_marker, const U eps2 = 1e-20, bool allow_missing_masters = false)
{
dolfinx::common::Timer timer("~MPC: Inelastic condition");
MPI_Comm comm = V.mesh()->comm();
int rank = -1;
MPI_Comm_rank(comm, &rank);
// Extract some const information from function-space
const std::shared_ptr<const dolfinx::common::IndexMap> imap
= V.dofmap()->index_map;
const int tdim = V.mesh()->topology()->dim();
const int fdim = tdim - 1;
const int block_size = V.dofmap()->index_map_bs();
std::int32_t size_local = V.dofmap()->index_map->size_local();
// Create entity permutations needed in evaluate_basis_functions
V.mesh()->topology_mutable()->create_entity_permutations();
// Create connectivities needed for evaluate_basis_functions and
// select_colliding cells
V.mesh()->topology_mutable()->create_connectivity(fdim, tdim);
V.mesh()->topology_mutable()->create_connectivity(tdim, tdim);
std::vector<std::int32_t> slave_blocks
= impl::locate_slave_dofs<U>(V, meshtags, slave_marker);
std::ranges::for_each(slave_blocks,
[block_size](std::int32_t& d) { d /= block_size; });
// Vector holding what blocks local to process are slaves
std::vector<std::int32_t> local_blocks;
// Array holding ghost slaves blocks (masters,coeffs and offsets will be
// received)
std::vector<std::int32_t> ghost_blocks;
// Map slave blocks to arrays holding local bocks and ghost blocks
std::ranges::for_each(
slave_blocks,
[size_local, &local_blocks, &ghost_blocks](const std::int32_t block)
{
if (block < size_local)
local_blocks.push_back(block);
else
ghost_blocks.push_back(block);
});
// Map local blocks to global indices
std::vector<std::int64_t> local_blocks_as_glob(local_blocks.size());
imap->local_to_global(local_blocks, local_blocks_as_glob);
// Create slave_dofs->master facets and master->slave dofs neighborhood
// comms
const bool has_slave = !local_blocks.empty();
std::array<MPI_Comm, 2> neighborhood_comms
= create_neighborhood_comms(comm, meshtags, has_slave, master_marker);
/// Compute which rank (relative to neighbourhood) to send each ghost to
std::span<const int> ghost_owners = imap->owners();
// Create new index-map where there are only ghosts for slaves
std::shared_ptr<const dolfinx::common::IndexMap> slave_index_map;
{
std::vector<int> slave_ranks(ghost_blocks.size());
for (std::size_t i = 0; i < ghost_blocks.size(); ++i)
slave_ranks[i] = ghost_owners[ghost_blocks[i] - size_local];
std::vector<std::int64_t> ghosts_as_global(ghost_blocks.size());
imap->local_to_global(ghost_blocks, ghosts_as_global);
slave_index_map = std::make_shared<dolfinx::common::IndexMap>(
comm, imap->size_local(), ghosts_as_global, slave_ranks);
}
// Create boundingboxtree for master surface
auto facet_to_cell = V.mesh()->topology()->connectivity(fdim, tdim);
assert(facet_to_cell);
dolfinx::geometry::BoundingBoxTree<U> bb_tree = impl::create_boundingbox_tree(
*V.mesh(), meshtags, master_marker, std::sqrt(eps2));
// Tabulate slave block coordinates and find colliding cells
std::vector<std::int32_t> slave_cells = dolfinx_mpc::create_block_to_cell_map(
*V.mesh()->topology(), *V.dofmap(), local_blocks);
std::vector<U> slave_coordinates;
{
std::array<std::size_t, 2> c_shape;
std::tie(slave_coordinates, c_shape)
= dolfinx_mpc::tabulate_dof_coordinates<U>(V, local_blocks,
slave_cells);
}
// Loop through all masters on current processor and check if they
// collide with a local master facet
std::map<std::int32_t, std::vector<std::int32_t>> local_owners;
std::map<std::int32_t, std::vector<std::int64_t>> local_masters;
std::map<std::int32_t, std::vector<T>> local_coeffs;
std::vector<std::int64_t> blocks_wo_local_collision;
std::vector<size_t> collision_to_local;
{
std::vector<std::int32_t> colliding_cells
= dolfinx_mpc::find_local_collisions<U>(*V.mesh(), bb_tree,
slave_coordinates, eps2);
auto [basis_values, basis_shape] = dolfinx_mpc::evaluate_basis_functions<U>(
V, slave_coordinates, colliding_cells);
assert(basis_shape.back() == 1);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
U, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
basis(basis_values.data(), basis_shape[0], basis_shape[1]);
std::vector<std::int64_t> master_block_global;
std::vector<std::int32_t> l_master;
std::vector<T> coeff;
for (std::size_t i = 0; i < local_blocks.size(); ++i)
{
if (const auto& cell = colliding_cells[i]; cell != -1)
{
auto cell_blocks = V.dofmap()->cell_dofs(cell);
l_master.reserve(cell_blocks.size());
coeff.reserve(cell_blocks.size());
assert(l_master.empty());
assert(coeff.empty());
// Store block and non-zero basis value
for (std::size_t j = 0; j < cell_blocks.size(); ++j)
{
if (const T c = basis(i, j); std::abs(c) > 1e-6)
{
coeff.push_back(c);
l_master.push_back(cell_blocks[j]);
}
}
// If no local contributions found add to remote list
if (l_master.empty())
{
blocks_wo_local_collision.push_back(local_blocks_as_glob[i]);
collision_to_local.push_back(i);
}
else
{
// Convert local block to global block
const std::size_t num_masters = l_master.size();
master_block_global.resize(num_masters);
imap->local_to_global(l_master, master_block_global);
// Insert local contributions in each block
for (int j = 0; j < block_size; ++j)
{
const std::int32_t local_slave = local_blocks[i] * block_size + j;
for (std::size_t k = 0; k < num_masters; k++)
{
local_masters[local_slave].push_back(
master_block_global[k] * block_size + j);
local_coeffs[local_slave].push_back(coeff[k]);
local_owners[local_slave].push_back(
l_master[k] < size_local
? rank
: ghost_owners[l_master[k] - size_local]);
}
}
l_master.clear();
coeff.clear();
}
}
else
{
blocks_wo_local_collision.push_back(local_blocks_as_glob[i]);
collision_to_local.push_back(i);
}
}
}
// Extract coordinates and normals to distribute
std::vector<U> distribute_coordinates(blocks_wo_local_collision.size() * 3);
for (std::size_t i = 0; i < collision_to_local.size(); ++i)
{
std::ranges::copy_n(
std::next(slave_coordinates.begin(), 3 * collision_to_local[i]), 3,
std::next(distribute_coordinates.begin(), 3 * i));
}
dolfinx_mpc::mpc_data<T> mpc;
// If serial, we only have to gather slaves, masters, coeffs in 1D
// arrays
if (int mpi_size = dolfinx::MPI::size(comm); mpi_size == 1)
{
if ((!blocks_wo_local_collision.empty()) and (!allow_missing_masters))
{
throw std::runtime_error(
"No masters found on contact surface (when executed in serial). "
"Please make sure that the surfaces are in contact, or increase "
"the "
"tolerance eps2.");
}
std::vector<std::int64_t> masters_out;
std::vector<T> coeffs_out;
std::vector<std::int32_t> offsets_out = {0};
std::vector<std::int32_t> slaves_out;
// Flatten the maps to 1D arrays (assuming all slaves are local
// slaves)
std::vector<std::int32_t> slaves;
slaves.reserve(block_size * local_blocks.size());
// If we allow missing masters, we need to skip those slaves from the MPC
if ((!blocks_wo_local_collision.empty()))
{
int counter = 0;
std::ranges::for_each(
local_blocks,
[block_size, tdim, &masters_out, &local_masters, &coeffs_out,
&local_coeffs, &offsets_out, &slaves, &counter, &collision_to_local](const std::int32_t block)
{
if (std::find(collision_to_local.begin(), collision_to_local.end(), counter++) != collision_to_local.end())
{
std::cout << "Skipping block " << block << " without local collision." << counter << std::endl;
return; // Skip blocks without local collision
}
else
{
for (std::int32_t j = 0; j < block_size; ++j)
{
const std::int32_t slave = block * block_size + j;
slaves.push_back(slave);
masters_out.insert(masters_out.end(), local_masters[slave].begin(),
local_masters[slave].end());
coeffs_out.insert(coeffs_out.end(), local_coeffs[slave].begin(),
local_coeffs[slave].end());
offsets_out.push_back((std::int32_t)masters_out.size());
}
}
});
}
else
{
std::ranges::for_each(
local_blocks,
[block_size, tdim, &masters_out, &local_masters, &coeffs_out,
&local_coeffs, &offsets_out, &slaves](const std::int32_t block)
{
for (std::int32_t j = 0; j < block_size; ++j)
{
const std::int32_t slave = block * block_size + j;
slaves.push_back(slave);
masters_out.insert(masters_out.end(), local_masters[slave].begin(),
local_masters[slave].end());
coeffs_out.insert(coeffs_out.end(), local_coeffs[slave].begin(),
local_coeffs[slave].end());
offsets_out.push_back((std::int32_t)masters_out.size());
}
});
}
std::vector<std::int32_t> owners(masters_out.size());
std::ranges::fill(owners, 0);
mpc.slaves = slaves;
mpc.masters = masters_out;
mpc.offsets = offsets_out;
mpc.owners = owners;
mpc.coeffs = coeffs_out;
return mpc;
}
// Get the slave->master recv from and send to ranks
int indegree(-1);
int outdegree(-2);
int weighted(-1);
MPI_Dist_graph_neighbors_count(neighborhood_comms[0], &indegree, &outdegree,
&weighted);
// Figure out how much data to receive from each neighbor
const auto num_colliding_blocks = (int)blocks_wo_local_collision.size();
std::vector<std::int32_t> num_slave_blocks(indegree + 1);
MPI_Neighbor_allgather(
&num_colliding_blocks, 1, dolfinx::MPI::mpi_type<std::int32_t>(),
num_slave_blocks.data(), 1, dolfinx::MPI::mpi_type<std::int32_t>(),
neighborhood_comms[0]);
num_slave_blocks.pop_back();
// Compute displacements for data to receive
std::vector<int> disp(indegree + 1, 0);
std::partial_sum(num_slave_blocks.begin(), num_slave_blocks.end(),
disp.begin() + 1);
// Send data to neighbors and receive data
std::vector<std::int64_t> remote_slave_blocks(disp.back());
MPI_Neighbor_allgatherv(
blocks_wo_local_collision.data(), num_colliding_blocks,
dolfinx::MPI::mpi_type<std::int64_t>(), remote_slave_blocks.data(),
num_slave_blocks.data(), disp.data(),
dolfinx::MPI::mpi_type<std::int64_t>(), neighborhood_comms[0]);
// Multiply recv size by three to accommodate block coordinates
std::vector<std::int32_t> num_block_coordinates(indegree);
for (std::size_t i = 0; i < num_slave_blocks.size(); ++i)
num_block_coordinates[i] = num_slave_blocks[i] * 3;
std::vector<int> coordinate_disp(indegree + 1, 0);
std::partial_sum(num_block_coordinates.begin(), num_block_coordinates.end(),
coordinate_disp.begin() + 1);
// Send slave coordinates to neighbors
std::vector<U> recv_coords(disp.back() * 3);
MPI_Neighbor_allgatherv(distribute_coordinates.data(),
(int)distribute_coordinates.size(),
dolfinx::MPI::mpi_type<U>(), recv_coords.data(),
num_block_coordinates.data(), coordinate_disp.data(),
dolfinx::MPI::mpi_type<U>(), neighborhood_comms[0]);
int err0 = MPI_Comm_free(&neighborhood_comms[0]);
dolfinx::MPI::check_error(comm, err0);
// Vector for processes with slaves, mapping slaves with
// collision on this process
std::vector<std::vector<std::int64_t>> collision_slaves(indegree);
std::vector<std::map<std::int64_t, std::vector<std::int64_t>>>
collision_masters(indegree);
std::vector<std::map<std::int64_t, std::vector<T>>> collision_coeffs(
indegree);
std::vector<std::map<std::int64_t, std::vector<std::int32_t>>>
collision_owners(indegree);
std::vector<std::map<std::int64_t, std::vector<std::int32_t>>>
collision_block_offsets(indegree);
{
std::vector<std::int32_t> remote_cell_collisions
= dolfinx_mpc::find_local_collisions<U>(*V.mesh(), bb_tree, recv_coords,
eps2);
auto [basis, basis_shape] = dolfinx_mpc::evaluate_basis_functions<U>(
V, recv_coords, remote_cell_collisions);
assert(basis_shape.back() == 1);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const U, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
basis_span(basis.data(), basis_shape[0], basis_shape[1]);
// TODO: Rework this so it is the same as the code on owning process.
// Preferably get rid of all the std::map's
// Work arrays for loop
std::vector<std::int32_t> r_master;
std::vector<T> r_coeff;
std::vector<std::int64_t> remote_master_global;
for (std::int32_t i = 0; i < indegree; ++i)
{
for (std::int32_t j = disp[i]; j < disp[i + 1]; ++j)
{
const std::int64_t slave_loc = remote_slave_blocks[j];
// Initialize number of masters for each incoming slave to 0
collision_block_offsets[i][remote_slave_blocks[j]]
= std::vector<std::int32_t>(tdim, 0);
if (const auto& cell = remote_cell_collisions[j]; cell != -1)
{
auto cell_blocks = V.dofmap()->cell_dofs(cell);
r_master.reserve(cell_blocks.size());
r_coeff.reserve(cell_blocks.size());
assert(r_master.empty());
assert(r_coeff.empty());
// Store block and non-zero basis values
for (std::size_t k = 0; k < cell_blocks.size(); ++k)
{
if (const T c = basis_span(j, k); std::abs(c) > 1e-6)
{
r_coeff.push_back(c);
r_master.push_back(cell_blocks[k]);
}
}
// If no local contributions do nothing
if (!r_master.empty())
{
const std::size_t num_masters = r_master.size();
remote_master_global.resize(num_masters);
imap->local_to_global(r_master, remote_master_global);
// Insert local contributions in each block
assert(block_size == tdim);
for (int l = 0; l < tdim; ++l)
{
for (std::size_t k = 0; k < num_masters; k++)
{
collision_masters[i][slave_loc].push_back(
remote_master_global[k] * block_size + l);
collision_coeffs[i][slave_loc].push_back(r_coeff[k]);
collision_owners[i][slave_loc].push_back(
r_master[k] < size_local
? rank
: ghost_owners[r_master[k] - size_local]);
collision_block_offsets[i][slave_loc][l]++;
}
}
r_master.clear();
r_coeff.clear();
collision_slaves[i].push_back(slave_loc);
}
}
}
}
}
// Flatten data structures before send/recv
std::vector<std::int32_t> num_found_slave_blocks(indegree + 1);
for (std::int32_t i = 0; i < indegree; ++i)
num_found_slave_blocks[i] = (std::int32_t)collision_slaves[i].size();
// Get info about reverse communicator (masters->slaves)
auto [src_ranks_rev, dest_ranks_rev]
= dolfinx_mpc::compute_neighborhood(neighborhood_comms[1]);
const std::size_t indegree_rev = src_ranks_rev.size();
// Communicate number of incoming slaves and masters after coll
// detection
std::vector<int> inc_num_found_slave_blocks(indegree_rev + 1);
MPI_Neighbor_alltoall(num_found_slave_blocks.data(), 1, MPI_INT,
inc_num_found_slave_blocks.data(), 1, MPI_INT,
neighborhood_comms[1]);
inc_num_found_slave_blocks.pop_back();
num_found_slave_blocks.pop_back();
std::vector<std::int32_t> num_collision_masters(indegree + 1);
std::vector<std::int64_t> found_slave_blocks;
std::vector<std::int64_t> found_masters;
std::vector<std::int32_t> offset_for_blocks;
std::vector<std::int32_t> offsets_in_blocks;
std::vector<std::int32_t> found_owners;
std::vector<T> found_coefficients;
for (std::int32_t i = 0; i < indegree; ++i)
{
std::int32_t master_offset = 0;
std::vector<std::int64_t>& slaves_i = collision_slaves[i];
found_slave_blocks.insert(found_slave_blocks.end(), slaves_i.begin(),
slaves_i.end());
for (auto slave : slaves_i)
{
std::vector<std::int64_t>& masters_ij = collision_masters[i][slave];
num_collision_masters[i] += masters_ij.size();
found_masters.insert(found_masters.end(), masters_ij.begin(),
masters_ij.end());
std::vector<T>& coeffs_ij = collision_coeffs[i][slave];
found_coefficients.insert(found_coefficients.end(), coeffs_ij.begin(),
coeffs_ij.end());
std::vector<std::int32_t>& owners_ij = collision_owners[i][slave];
found_owners.insert(found_owners.end(), owners_ij.begin(),
owners_ij.end());
std::vector<std::int32_t>& blocks_ij = collision_block_offsets[i][slave];
offsets_in_blocks.insert(offsets_in_blocks.end(), blocks_ij.begin(),
blocks_ij.end());
master_offset += masters_ij.size();
offset_for_blocks.push_back(master_offset);
}
}
std::vector<int> num_inc_masters(indegree_rev + 1);
MPI_Neighbor_alltoall(num_collision_masters.data(), 1, MPI_INT,
num_inc_masters.data(), 1, MPI_INT,
neighborhood_comms[1]);
num_inc_masters.pop_back();
num_collision_masters.pop_back();
// Create displacement vector for slaves and masters
std::vector<int> disp_inc_slave_blocks(indegree_rev + 1, 0);
std::partial_sum(inc_num_found_slave_blocks.begin(),
inc_num_found_slave_blocks.end(),
disp_inc_slave_blocks.begin() + 1);
std::vector<int> disp_inc_masters(indegree_rev + 1, 0);
std::partial_sum(num_inc_masters.begin(), num_inc_masters.end(),
disp_inc_masters.begin() + 1);
// Compute send offsets
std::vector<int> send_disp_slave_blocks(indegree + 1, 0);
std::partial_sum(num_found_slave_blocks.begin(), num_found_slave_blocks.end(),
send_disp_slave_blocks.begin() + 1);
std::vector<int> send_disp_masters(indegree + 1, 0);
std::partial_sum(num_collision_masters.begin(), num_collision_masters.end(),
send_disp_masters.begin() + 1);
// Receive colliding blocks from other processor
std::vector<std::int64_t> remote_colliding_blocks(
disp_inc_slave_blocks.back());
MPI_Neighbor_alltoallv(
found_slave_blocks.data(), num_found_slave_blocks.data(),
send_disp_slave_blocks.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
remote_colliding_blocks.data(), inc_num_found_slave_blocks.data(),
disp_inc_slave_blocks.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
neighborhood_comms[1]);
std::vector<std::int32_t> recv_blocks_as_local(
remote_colliding_blocks.size());
imap->global_to_local(remote_colliding_blocks, recv_blocks_as_local);
std::vector<std::int32_t> remote_colliding_offsets(
disp_inc_slave_blocks.back());
MPI_Neighbor_alltoallv(
offset_for_blocks.data(), num_found_slave_blocks.data(),
send_disp_slave_blocks.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
remote_colliding_offsets.data(), inc_num_found_slave_blocks.data(),
disp_inc_slave_blocks.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
neighborhood_comms[1]);
// Receive colliding masters and relevant data from other processor
std::vector<std::int64_t> remote_colliding_masters(disp_inc_masters.back());
MPI_Neighbor_alltoallv(
found_masters.data(), num_collision_masters.data(),
send_disp_masters.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
remote_colliding_masters.data(), num_inc_masters.data(),
disp_inc_masters.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
neighborhood_comms[1]);
std::vector<T> remote_colliding_coeffs(disp_inc_masters.back());
MPI_Neighbor_alltoallv(found_coefficients.data(),
num_collision_masters.data(), send_disp_masters.data(),
dolfinx::MPI::mpi_type<T>(),
remote_colliding_coeffs.data(), num_inc_masters.data(),
disp_inc_masters.data(), dolfinx::MPI::mpi_type<T>(),
neighborhood_comms[1]);
std::vector<std::int32_t> remote_colliding_owners(disp_inc_masters.back());
MPI_Neighbor_alltoallv(
found_owners.data(), num_collision_masters.data(),
send_disp_masters.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
remote_colliding_owners.data(), num_inc_masters.data(),
disp_inc_masters.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
neighborhood_comms[1]);
// Create receive displacement of data per slave block
std::vector<std::int32_t> recv_num_found_blocks(indegree_rev);
for (std::size_t i = 0; i < recv_num_found_blocks.size(); ++i)
recv_num_found_blocks[i] = inc_num_found_slave_blocks[i] * tdim;
std::vector<int> inc_block_disp(indegree_rev + 1, 0);
std::partial_sum(recv_num_found_blocks.begin(), recv_num_found_blocks.end(),
inc_block_disp.begin() + 1);
// Create send displacement of data per slave block
std::vector<std::int32_t> num_found_blocks(indegree);
for (std::int32_t i = 0; i < indegree; ++i)
num_found_blocks[i] = tdim * num_found_slave_blocks[i];
std::vector<int> send_block_disp(indegree + 1, 0);
std::partial_sum(num_found_blocks.begin(), num_found_blocks.end(),
send_block_disp.begin() + 1);
// Send the block information to slave processor
std::vector<std::int32_t> block_dofs_recv(inc_block_disp.back());
MPI_Neighbor_alltoallv(
offsets_in_blocks.data(), num_found_blocks.data(), send_block_disp.data(),
dolfinx::MPI::mpi_type<std::int32_t>(), block_dofs_recv.data(),
recv_num_found_blocks.data(), inc_block_disp.data(),
dolfinx::MPI::mpi_type<std::int32_t>(), neighborhood_comms[1]);
int err1 = MPI_Comm_free(&neighborhood_comms[1]);
dolfinx::MPI::check_error(comm, err1);
// Iterate through the processors
for (std::size_t i = 0; i < src_ranks_rev.size(); ++i)
{
// Find offsets for masters on given proc
std::vector<std::int32_t> master_offsets = {0};
const std::int32_t min = disp_inc_slave_blocks[i];
const std::int32_t max = disp_inc_slave_blocks[i + 1];
master_offsets.insert(master_offsets.end(),
remote_colliding_offsets.begin() + min,
remote_colliding_offsets.begin() + max);
// Extract the number of masters per topological dimensions
const std::int32_t min_dim = inc_block_disp[i];
const std::int32_t max_dim = inc_block_disp[i + 1];
const std::vector<std::int32_t> num_dofs_per_block(
block_dofs_recv.begin() + min_dim, block_dofs_recv.begin() + max_dim);
// Loop through slaves and add them if they havent already been added
for (std::size_t j = 0; j < master_offsets.size() - 1; ++j)
{
// Get the slave block
const std::int32_t local_block = recv_blocks_as_local[min + j];
std::vector<std::int32_t> block_offsets(tdim + 1, 0);
std::partial_sum(num_dofs_per_block.begin() + j * tdim,
num_dofs_per_block.begin() + (j + 1) * tdim,
block_offsets.begin() + 1);
for (std::int32_t k = 0; k < tdim; ++k)
{
std::int32_t local_slave = local_block * block_size + k;
// Skip if already found on other incoming processor
if (local_masters[local_slave].empty())
{
std::vector<std::int64_t> masters_(
remote_colliding_masters.begin() + disp_inc_masters[i]
+ master_offsets[j] + block_offsets[k],
remote_colliding_masters.begin() + disp_inc_masters[i]
+ master_offsets[j] + block_offsets[k + 1]);
local_masters[local_slave].insert(local_masters[local_slave].end(),
masters_.begin(), masters_.end());
std::vector<T> coeffs_(
remote_colliding_coeffs.begin() + disp_inc_masters[i]
+ master_offsets[j] + block_offsets[k],
remote_colliding_coeffs.begin() + disp_inc_masters[i]
+ master_offsets[j] + block_offsets[k + 1]);
local_coeffs[local_slave].insert(local_coeffs[local_slave].end(),
coeffs_.begin(), coeffs_.end());
std::vector<std::int32_t> owners_(
remote_colliding_owners.begin() + disp_inc_masters[i]
+ master_offsets[j] + block_offsets[k],
remote_colliding_owners.begin() + disp_inc_masters[i]
+ master_offsets[j] + block_offsets[k + 1]);
local_owners[local_slave].insert(local_owners[local_slave].end(),
owners_.begin(), owners_.end());
}
}
}
}
for (auto block : local_blocks)
{
for (int d = 0; d < block_size; d++)
{
if ((local_masters[block * block_size + d].empty()) and (!allow_missing_masters))
{
throw std::runtime_error(
"No masters found on contact surface for slave. Please run in "
"serial "
"to check that there is contact, or increase eps2.");
}
}
}
// Distribute data for ghosted slaves (the coeffs, owners and offsets)
std::vector<std::int32_t> ghost_slaves(tdim * ghost_blocks.size());
for (std::size_t i = 0; i < ghost_blocks.size(); ++i)
for (std::int32_t j = 0; j < tdim; ++j)
ghost_slaves[i * tdim + j] = ghost_blocks[i] * block_size + j;
// Compute source and dest ranks of communicator
MPI_Comm slave_to_ghost
= create_owner_to_ghost_comm(local_blocks, ghost_blocks, imap);
auto neighbour_ranks = dolfinx_mpc::compute_neighborhood(slave_to_ghost);
const std::vector<int>& src_ranks_ghost = neighbour_ranks.first;
const std::vector<int>& dest_ranks_ghost = neighbour_ranks.second;
// Count number of incoming slaves
std::vector<std::int32_t> inc_num_slaves(src_ranks_ghost.size(), 0);
std::ranges::for_each(ghost_slaves,
[block_size, size_local, &ghost_owners, &inc_num_slaves,
&src_ranks_ghost](std::int32_t slave)
{
const std::int32_t owner
= ghost_owners[slave / block_size - size_local];
const auto it
= std::ranges::find(src_ranks_ghost, owner);
const auto index
= std::distance(src_ranks_ghost.begin(), it);
inc_num_slaves[index]++;
});
// Count number of outgoing slaves and masters
dolfinx::graph::AdjacencyList<int> shared_indices
= slave_index_map->index_to_dest_ranks();
std::vector<std::int32_t> out_num_slaves(dest_ranks_ghost.size(), 0);
std::vector<std::int32_t> out_num_masters(dest_ranks_ghost.size() + 1, 0);
// Create mappings from ghosted process to the data to recv
// (can include repeats of data)
std::map<std::int32_t, std::vector<std::int64_t>> proc_to_ghost;
std::map<std::int32_t, std::vector<std::int64_t>> proc_to_ghost_masters;
std::map<std::int32_t, std::vector<T>> proc_to_ghost_coeffs;
std::map<std::int32_t, std::vector<std::int32_t>> proc_to_ghost_owners;
std::map<std::int32_t, std::vector<std::int32_t>> proc_to_ghost_offsets;
std::vector<std::int32_t> loc_block(1);
std::vector<std::int64_t> glob_block(1);
std::ranges::for_each(
local_blocks,
[block_size, &local_masters, &local_coeffs, &local_owners,
&shared_indices, &dest_ranks_ghost, &loc_block, &glob_block,
&out_num_masters, &out_num_slaves, &imap, &proc_to_ghost,
&proc_to_ghost_masters, &proc_to_ghost_coeffs, &proc_to_ghost_owners,
&proc_to_ghost_offsets, tdim](const auto block)
{
for (std::int32_t j = 0; j < tdim; ++j)
{
const std::int32_t slave = block * block_size + j;
const std::vector<std::int64_t>& masters_i = local_masters[slave];
const std::vector<T>& coeffs_i = local_coeffs[slave];
const std::vector<std::int32_t>& owners_i = local_owners[slave];
const auto num_masters = (std::int32_t)masters_i.size();
for (auto proc : shared_indices.links(slave / block_size))
{
const auto it = std::ranges::find(dest_ranks_ghost, proc);
std::int32_t index = std::distance(dest_ranks_ghost.begin(), it);
out_num_masters[index] += num_masters;
out_num_slaves[index]++;
// Map slaves to global dof to be recognized by recv proc
std::div_t div = std::div(slave, block_size);
loc_block[0] = div.quot;
imap->local_to_global(loc_block, glob_block);
glob_block[0] = glob_block[0] * block_size + div.rem;
proc_to_ghost[index].push_back(glob_block[0]);
// Add master data in process-wise fashion
proc_to_ghost_masters[index].insert(
proc_to_ghost_masters[index].end(), masters_i.begin(),
masters_i.end());
proc_to_ghost_coeffs[index].insert(
proc_to_ghost_coeffs[index].end(), coeffs_i.begin(),
coeffs_i.end());
proc_to_ghost_owners[index].insert(
proc_to_ghost_owners[index].end(), owners_i.begin(),
owners_i.end());
proc_to_ghost_offsets[index].push_back(
proc_to_ghost_masters[index].size());
}
}
});
// Flatten map of global slave ghost dofs to use alltoallv
std::vector<std::int64_t> out_ghost_slaves;
std::vector<std::int64_t> out_ghost_masters;
std::vector<T> out_ghost_coeffs;
std::vector<std::int32_t> out_ghost_owners;
std::vector<std::int32_t> out_ghost_offsets;
std::vector<std::int32_t> num_send_slaves(dest_ranks_ghost.size());
std::vector<std::int32_t> num_send_masters(dest_ranks_ghost.size());
for (std::size_t i = 0; i < dest_ranks_ghost.size(); ++i)
{
num_send_slaves[i] = proc_to_ghost[i].size();
num_send_masters[i] = proc_to_ghost_masters[i].size();
out_ghost_slaves.insert(out_ghost_slaves.end(), proc_to_ghost[i].begin(),
proc_to_ghost[i].end());
out_ghost_masters.insert(out_ghost_masters.end(),
proc_to_ghost_masters[i].begin(),
proc_to_ghost_masters[i].end());
out_ghost_coeffs.insert(out_ghost_coeffs.end(),
proc_to_ghost_coeffs[i].begin(),
proc_to_ghost_coeffs[i].end());
out_ghost_owners.insert(out_ghost_owners.end(),
proc_to_ghost_owners[i].begin(),
proc_to_ghost_owners[i].end());
out_ghost_offsets.insert(out_ghost_offsets.end(),
proc_to_ghost_offsets[i].begin(),
proc_to_ghost_offsets[i].end());
}
// Receive global slave dofs for ghosts structured as on src proc
// Compute displacements for data to send and receive
std::vector<int> disp_recv_ghost_slaves(src_ranks_ghost.size() + 1, 0);
std::partial_sum(inc_num_slaves.begin(), inc_num_slaves.end(),
disp_recv_ghost_slaves.begin() + 1);
std::vector<int> disp_send_ghost_slaves(dest_ranks_ghost.size() + 1, 0);
std::partial_sum(num_send_slaves.begin(), num_send_slaves.end(),
disp_send_ghost_slaves.begin() + 1);
std::vector<std::int64_t> in_ghost_slaves(disp_recv_ghost_slaves.back());
MPI_Neighbor_alltoallv(
out_ghost_slaves.data(), num_send_slaves.data(),
disp_send_ghost_slaves.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
in_ghost_slaves.data(), inc_num_slaves.data(),
disp_recv_ghost_slaves.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
slave_to_ghost);
std::vector<std::int32_t> in_ghost_offsets(disp_recv_ghost_slaves.back());
MPI_Neighbor_alltoallv(
out_ghost_offsets.data(), num_send_slaves.data(),
disp_send_ghost_slaves.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
in_ghost_offsets.data(), inc_num_slaves.data(),
disp_recv_ghost_slaves.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
slave_to_ghost);
// Communicate size of communication of masters
std::vector<int> inc_num_masters(src_ranks_ghost.size() + 1);
MPI_Neighbor_alltoall(out_num_masters.data(), 1, MPI_INT,
inc_num_masters.data(), 1, MPI_INT, slave_to_ghost);
inc_num_masters.pop_back();
out_num_masters.pop_back();
// Send and receive the masters (the proc owning the master) and the
// corresponding coeffs from the processor owning the slave
std::vector<int> disp_recv_ghost_masters(src_ranks_ghost.size() + 1, 0);
std::partial_sum(inc_num_masters.begin(), inc_num_masters.end(),
disp_recv_ghost_masters.begin() + 1);
std::vector<int> disp_send_ghost_masters(dest_ranks_ghost.size() + 1, 0);
std::partial_sum(num_send_masters.begin(), num_send_masters.end(),
disp_send_ghost_masters.begin() + 1);
std::vector<std::int64_t> in_ghost_masters(disp_recv_ghost_masters.back());
MPI_Neighbor_alltoallv(
out_ghost_masters.data(), num_send_masters.data(),
disp_send_ghost_masters.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
in_ghost_masters.data(), inc_num_masters.data(),
disp_recv_ghost_masters.data(), dolfinx::MPI::mpi_type<std::int64_t>(),
slave_to_ghost);
std::vector<T> in_ghost_coeffs(disp_recv_ghost_masters.back());
MPI_Neighbor_alltoallv(out_ghost_coeffs.data(), num_send_masters.data(),
disp_send_ghost_masters.data(),
dolfinx::MPI::mpi_type<T>(), in_ghost_coeffs.data(),
inc_num_masters.data(), disp_recv_ghost_masters.data(),
dolfinx::MPI::mpi_type<T>(), slave_to_ghost);
std::vector<std::int32_t> in_ghost_owners(disp_recv_ghost_masters.back());
MPI_Neighbor_alltoallv(
out_ghost_owners.data(), num_send_masters.data(),
disp_send_ghost_masters.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
in_ghost_owners.data(), inc_num_masters.data(),
disp_recv_ghost_masters.data(), dolfinx::MPI::mpi_type<std::int32_t>(),
slave_to_ghost);
int err3 = MPI_Comm_free(&slave_to_ghost);
dolfinx::MPI::check_error(comm, err3);
// Accumulate offsets of masters from different processors
std::vector<std::int32_t> ghost_offsets = {0};
for (std::size_t i = 0; i < src_ranks_ghost.size(); ++i)
{
const std::int32_t min = disp_recv_ghost_slaves[i];
const std::int32_t max = disp_recv_ghost_slaves[i + 1];
std::vector<std::int32_t> inc_offset;
inc_offset.insert(inc_offset.end(), in_ghost_offsets.begin() + min,
in_ghost_offsets.begin() + max);
for (std::int32_t& offset : inc_offset)
offset += *(ghost_offsets.end() - 1);
ghost_offsets.insert(ghost_offsets.end(), inc_offset.begin(),
inc_offset.end());
}
// Flatten local slaves data
std::vector<std::int32_t> slaves;
slaves.reserve(tdim * local_blocks.size());
std::vector<std::int64_t> masters;
masters.reserve(slaves.size());
std::vector<T> coeffs_out;
coeffs_out.reserve(slaves.size());
std::vector<std::int32_t> owners_out;
owners_out.reserve(slaves.size());
std::vector<std::int32_t> offsets = {0};
offsets.reserve(slaves.size() + 1);
std::ranges::for_each(
local_blocks,
[block_size, tdim, &masters, &local_masters, &coeffs_out, &local_coeffs,
&owners_out, &local_owners, &offsets, &slaves](const std::int32_t block)
{
for (std::int32_t j = 0; j < tdim; ++j)
{
// Add the slave if it has masters
const std::int32_t slave = block * block_size + j;
if (local_masters[slave].empty())
continue;
slaves.push_back(slave);
masters.insert(masters.end(), local_masters[slave].begin(),
local_masters[slave].end());
coeffs_out.insert(coeffs_out.end(), local_coeffs[slave].begin(),
local_coeffs[slave].end());
offsets.push_back((std::int32_t)masters.size());
owners_out.insert(owners_out.end(), local_owners[slave].begin(),
local_owners[slave].end());
}
});
// Extend local data with ghost entries
const std::int32_t num_loc_slaves = slaves.size();
const std::int32_t num_local_masters = masters.size();
const std::int32_t num_ghost_slaves = in_ghost_slaves.size();
const std::int32_t num_ghost_masters = in_ghost_masters.size();
masters.reserve(num_local_masters + num_ghost_masters);
coeffs_out.reserve(num_local_masters + num_ghost_masters);
owners_out.reserve(num_local_masters + num_ghost_masters);
offsets.reserve(num_local_masters + num_ghost_masters + 1);
std::vector<std::int32_t> local_ghosts
= map_dofs_global_to_local<U>(V, in_ghost_slaves);
for (std::int32_t i = 0; i < num_ghost_slaves; i++)
{
if (ghost_offsets[i+1] - ghost_offsets[i] == 0)
continue; // Skip if no masters for ghost slave
slaves.push_back(local_ghosts[i]);
for (std::int32_t j = ghost_offsets[i]; j < ghost_offsets[i + 1]; j++)
{
masters.push_back(in_ghost_masters[j]);
owners_out.push_back(in_ghost_owners[j]);
coeffs_out.push_back(in_ghost_coeffs[j]);
}
offsets.push_back((std::int32_t)masters.size());
}
mpc.slaves = slaves;
mpc.masters = masters;
mpc.offsets = offsets;
mpc.owners = owners_out;
mpc.coeffs = coeffs_out;
timer.stop();
return mpc;
}
//-----------------------------------------------------------------------------
} // namespace dolfinx_mpc
|