1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
// Copyright (C) 2022 Jorgen S. Dokken
//
// This file is part of DOLFINX_MPC
//
// SPDX-License-Identifier: MIT
#include "ContactConstraint.h"
#include <dolfinx/fem/DirichletBC.h>
namespace impl
{
/// Create a periodic MPC condition given a set of slave degrees of freedom
/// (blocked wrt. the input function space)
/// @param[in] V The input function space (possibly a collapsed sub space)
/// @param[in] relation Function relating coordinates of the slave surface to
/// the master surface
/// @param[in] scale Scaling of the periodic condition
/// @param[in] parent_map Map from collapsed space to parent space (Identity if
/// not collapsed)
/// @param[in] parent_space The parent space (The same space as V if not
/// collapsed)
/// @returns The multi point constraint
template <typename T, std::floating_point U>
dolfinx_mpc::mpc_data<T> _create_periodic_condition(
const dolfinx::fem::FunctionSpace<U>& V,
std::span<std::int32_t> slave_blocks,
const std::function<std::vector<U>(std::span<const U>)>& relation, T scale,
const std::function<const std::int32_t(const std::int32_t&)>& parent_map,
const dolfinx::fem::FunctionSpace<U>& parent_space)
{
// Map a list of indices in collapsed space back to the parent space
auto sub_to_parent = [&parent_map](const std::vector<std::int32_t>& sub_dofs)
{
std::vector<std::int32_t> parent_dofs(sub_dofs.size());
std::ranges::transform(sub_dofs, parent_dofs.begin(),
[&parent_map](auto& dof)
{ return parent_map(dof); });
return parent_dofs;
};
// Map a list of parent dofs (local to process) to its global dof
auto parent_dofmap = parent_space.dofmap();
auto parent_to_global
= [&parent_dofmap](const std::vector<std::int32_t>& dofs)
{
std::vector<std::int32_t> parent_blocks;
std::vector<std::int32_t> parent_rems;
parent_blocks.reserve(dofs.size());
parent_rems.reserve(dofs.size());
const auto bs = parent_dofmap->index_map_bs();
// Split parent dofs into blocks and rems
std::ranges::for_each(dofs,
[&parent_blocks, &parent_rems, &bs](auto dof)
{
std::div_t div = std::div(dof, bs);
parent_blocks.push_back(div.quot);
parent_rems.push_back(div.rem);
});
// Map blocks to global index
std::vector<std::int64_t> parents_glob(dofs.size());
parent_dofmap->index_map->local_to_global(parent_blocks, parents_glob);
// Unroll block size
for (std::size_t i = 0; i < dofs.size(); i++)
parents_glob[i] = parents_glob[i] * bs + parent_rems[i];
return parents_glob;
};
if (const std::size_t value_size = V.value_size() / V.element()->block_size();
value_size > 1)
throw std::runtime_error(
"Periodic conditions for vector valued spaces are not "
"implemented");
// Tolerance for adding scaled basis values to MPC. Any scaled basis
// value with lower absolute value than the tolerance is ignored
const U tol = 500 * std::numeric_limits<U>::epsilon();
auto mesh = V.mesh();
auto dofmap = V.dofmap();
auto imap = dofmap->index_map;
const int bs = dofmap->index_map_bs();
const int size_local = imap->size_local();
/// Compute which rank (relative to neighbourhood) to send each ghost to
std::span<const int> ghost_owners = imap->owners();
// Only work with local blocks
std::vector<std::int32_t> local_blocks;
local_blocks.reserve(slave_blocks.size());
std::ranges::for_each(slave_blocks,
[&local_blocks, size_local](auto block)
{
if (block < size_local)
local_blocks.push_back(block);
});
// Create map from slave dof blocks to a cell containing them
std::vector<std::int32_t> slave_cells = dolfinx_mpc::create_block_to_cell_map(
*V.mesh()->topology(), *V.dofmap(), local_blocks);
// Compute relation(slave_blocks)
std::vector<U> mapped_T_b(local_blocks.size() * 3);
const std::array<std::size_t, 2> T_shape = {local_blocks.size(), 3};
{
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
U, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent, 3>>
mapped_T(mapped_T_b.data(), T_shape);
// Tabulate dof coordinates for each dof
auto [x, x_shape] = dolfinx_mpc::tabulate_dof_coordinates(
V, local_blocks, slave_cells, true);
// Map all slave coordinates using the relation
std::vector<U> mapped_x = relation(x);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
U, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, 3, MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent>>
x_(mapped_x.data(), x_shape);
for (std::size_t i = 0; i < mapped_T.extent(0); ++i)
for (std::size_t j = 0; j < mapped_T.extent(1); ++j)
mapped_T(i, j) = x_(j, i);
}
// Get mesh info
const int tdim = mesh->topology()->dim();
auto cell_imap = mesh->topology()->index_map(tdim);
const int num_cells_local = cell_imap->size_local();
// Create bounding-box tree over owned cells
std::vector<std::int32_t> r(num_cells_local);
std::iota(r.begin(), r.end(), 0);
dolfinx::geometry::BoundingBoxTree<U> tree(*mesh.get(), tdim, r, tol);
auto process_tree = tree.create_global_tree(mesh->comm());
auto colliding_bbox_processes
= dolfinx::geometry::compute_collisions<U>(process_tree, mapped_T_b);
std::vector<std::int32_t> local_cell_collisions
= dolfinx_mpc::find_local_collisions<U>(*mesh, tree, mapped_T_b, tol);
dolfinx::common::Timer t0("~~Periodic: Local cell and eval basis");
auto [basis_values, basis_shape] = dolfinx_mpc::evaluate_basis_functions<U>(
V, mapped_T_b, local_cell_collisions);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const U, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 3>>
tabulated_basis_values(basis_values.data(), basis_shape);
t0.stop();
// Create output arrays
std::vector<std::int32_t> slaves;
slaves.reserve(slave_blocks.size() * bs);
std::vector<std::int64_t> masters;
masters.reserve(slave_blocks.size() * bs);
std::vector<std::int32_t> owners;
owners.reserve(slave_blocks.size() * bs);
// FIXME: This should really be templated
// Requires changes all over the place for mpc_data
std::vector<T> coeffs;
coeffs.reserve(slave_blocks.size() * bs);
std::vector<std::int32_t> num_masters_per_slave;
num_masters_per_slave.reserve(slave_blocks.size() * bs);
// Temporary array holding global indices
std::vector<std::int32_t> sub_dofs;
const int rank = dolfinx::MPI::rank(mesh->comm());
// Create counter for blocks that will be sent to other processes
const int num_procs = dolfinx::MPI::size(mesh->comm());
std::vector<std::int32_t> off_process_counter(num_procs, 0);
for (std::size_t i = 0; i < local_cell_collisions.size(); i++)
{
if (const std::int32_t cell = local_cell_collisions[i]; cell != -1)
{
// Map local dofs on master cell to global indices
auto cell_blocks = dofmap->cell_dofs(cell);
// Unroll local master dofs
sub_dofs.resize(cell_blocks.size() * bs);
for (std::size_t j = 0; j < cell_blocks.size(); j++)
for (int b = 0; b < bs; b++)
sub_dofs[j * bs + b] = cell_blocks[j] * bs + b;
auto parent_dofs = sub_to_parent(sub_dofs);
auto global_parent_dofs = parent_to_global(parent_dofs);
// Check if basis values are not zero, and add master, coeff and
// owner info for each dof in the block
for (int b = 0; b < bs; b++)
{
slaves.push_back(parent_map(local_blocks[i] * bs + b));
int num_masters = 0;
for (std::size_t j = 0; j < cell_blocks.size(); j++)
{
const std::int32_t cell_block = cell_blocks[j];
// NOTE: Assuming 0 value size
if (const T val = scale * tabulated_basis_values(i, j, 0);
std::abs(val) > tol)
{
num_masters++;
masters.push_back(global_parent_dofs[j * bs + b]);
coeffs.push_back(val);
// NOTE: Assuming same ownership of dofs in collapsed sub space
if (cell_block < size_local)
owners.push_back(rank);
else
owners.push_back(ghost_owners[cell_block - size_local]);
}
}
num_masters_per_slave.push_back(num_masters);
}
}
else
{
// Count number of incoming blocks from other processes
auto procs = colliding_bbox_processes.links((int)i);
for (auto proc : procs)
{
if (rank == proc)
continue;
off_process_counter[proc]++;
}
}
}
// Communicate s_to_m
std::vector<std::int32_t> s_to_m_ranks;
std::vector<std::int8_t> s_to_m_indicator(num_procs, 0);
std::vector<std::int32_t> num_out_slaves;
for (int i = 0; i < num_procs; i++)
{
if (off_process_counter[i] > 0 && i != rank)
{
s_to_m_indicator[i] = 1;
s_to_m_ranks.push_back(i);
num_out_slaves.push_back(off_process_counter[i]);
}
}
// Push back to avoid null_ptr
num_out_slaves.push_back(0);
std::vector<std::int8_t> indicator(num_procs);
MPI_Alltoall(s_to_m_indicator.data(), 1, MPI_INT8_T, indicator.data(), 1,
MPI_INT8_T, mesh->comm());
std::vector<std::int32_t> m_to_s_ranks;
for (int i = 0; i < num_procs; i++)
if (indicator[i])
m_to_s_ranks.push_back(i);
// Create neighborhood communicator
// Slave block owners -> Process with possible masters
std::vector<int> s_to_m_weights(s_to_m_ranks.size(), 1);
std::vector<int> m_to_s_weights(m_to_s_ranks.size(), 1);
MPI_Comm slave_to_master = MPI_COMM_NULL;
MPI_Dist_graph_create_adjacent(
mesh->comm(), (int)m_to_s_ranks.size(), m_to_s_ranks.data(),
m_to_s_weights.data(), (int)s_to_m_ranks.size(), s_to_m_ranks.data(),
s_to_m_weights.data(), MPI_INFO_NULL, false, &slave_to_master);
int indegree(-1);
int outdegree(-2);
int weighted(-1);
MPI_Dist_graph_neighbors_count(slave_to_master, &indegree, &outdegree,
&weighted);
assert(indegree == (int)m_to_s_ranks.size());
assert(outdegree == (int)s_to_m_ranks.size());
// Compute number of receiving slaves
std::vector<std::int32_t> num_recv_slaves(indegree + 1);
MPI_Neighbor_alltoall(
num_out_slaves.data(), 1, dolfinx::MPI::mpi_type<std::int32_t>(),
num_recv_slaves.data(), 1, dolfinx::MPI::mpi_type<std::int32_t>(),
slave_to_master);
num_out_slaves.pop_back();
num_recv_slaves.pop_back();
// Prepare data structures for sending information
std::vector<int> disp_out(outdegree + 1, 0);
std::partial_sum(num_out_slaves.begin(), num_out_slaves.end(),
disp_out.begin() + 1);
// Prepare data structures for receiving information
std::vector<int> disp_in(indegree + 1, 0);
std::partial_sum(num_recv_slaves.begin(), num_recv_slaves.end(),
disp_in.begin() + 1);
// Array holding all dofs (index local to process) for coordinates sent
// out
std::vector<std::int32_t> searching_dofs(bs * disp_out.back());
// Communicate coordinates of slave blocks
std::vector<std::int32_t> out_placement(outdegree, 0);
std::vector<U> coords_out(disp_out.back() * 3);
for (std::size_t i = 0; i < local_cell_collisions.size(); i++)
{
if (local_cell_collisions[i] == -1)
{
auto procs = colliding_bbox_processes.links((int)i);
for (auto proc : procs)
{
if (rank == proc)
continue;
// Find position in neighborhood communicator
auto it = std::ranges::find(s_to_m_ranks, proc);
assert(it != s_to_m_ranks.end());
auto dist = std::distance(s_to_m_ranks.begin(), it);
const std::int32_t insert_location
= disp_out[dist] + out_placement[dist]++;
// Copy coordinates and dofs to output arrays
std::ranges::copy_n(std::next(mapped_T_b.begin(), 3 * i), 3,
std::next(coords_out.begin(), 3 * insert_location));
for (int b = 0; b < bs; b++)
{
searching_dofs[insert_location * bs + b]
= parent_map(local_blocks[i] * bs + b);
}
}
}
}
// Communciate coordinates with other process
const std::array<std::size_t, 2> cr_shape = {(std::size_t)disp_in.back(), 3};
std::vector<U> coords_recvb(cr_shape.front() * cr_shape.back());
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const U,
MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent, 3>>
coords_recv(coords_recvb.data(), cr_shape);
// Take into account that we send three values per slave
auto m_3 = [](auto& num) { num *= 3; };
std::ranges::for_each(disp_out, m_3);
std::ranges::for_each(num_out_slaves, m_3);
std::ranges::for_each(disp_in, m_3);
std::ranges::for_each(num_recv_slaves, m_3);
// Communicate coordinates
MPI_Neighbor_alltoallv(
coords_out.data(), num_out_slaves.data(), disp_out.data(),
dolfinx::MPI::mpi_type<U>(), coords_recvb.data(), num_recv_slaves.data(),
disp_in.data(), dolfinx::MPI::mpi_type<U>(), slave_to_master);
int err = MPI_Comm_free(&slave_to_master);
dolfinx::MPI::check_error(mesh->comm(), err);
// Reset in_displacements to be per block for later usage
auto d_3 = [](auto& num) { num /= 3; };
std::ranges::for_each(disp_in, d_3);
// Reset out_displacments to be for every slave
auto m_bs_d_3 = [bs](auto& num) { num = num * bs / 3; };
std::ranges::for_each(disp_out, m_bs_d_3);
std::ranges::for_each(num_out_slaves, m_bs_d_3);
// Create remote arrays
std::vector<std::int64_t> masters_remote;
masters_remote.reserve(coords_recvb.size());
std::vector<std::int32_t> owners_remote;
owners_remote.reserve(coords_recvb.size());
std::vector<T> coeffs_remote;
coeffs_remote.reserve(coords_recvb.size());
std::vector<std::int32_t> num_masters_per_slave_remote;
num_masters_per_slave_remote.reserve(bs * coords_recvb.size() / 3);
std::vector<std::int32_t> remote_cell_collisions
= dolfinx_mpc::find_local_collisions<U>(*mesh, tree, coords_recvb, tol);
auto [remote_basis_valuesb, r_basis_shape]
= dolfinx_mpc::evaluate_basis_functions<U>(V, coords_recvb,
remote_cell_collisions);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const U, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 3>>
remote_basis_values(remote_basis_valuesb.data(), r_basis_shape);
// Find remote masters and count how many to send to each process
std::vector<std::int32_t> num_remote_masters(indegree, 0);
std::vector<std::int32_t> num_remote_slaves(indegree);
for (int i = 0; i < indegree; i++)
{
// Count number of masters added and number of slaves for output
std::int32_t r_masters = 0;
num_remote_slaves[i] = bs * (disp_in[i + 1] - disp_in[i]);
for (std::int32_t j = disp_in[i]; j < disp_in[i + 1]; j++)
{
if (const std::int32_t cell = remote_cell_collisions[j]; cell == -1)
{
for (int b = 0; b < bs; b++)
num_masters_per_slave_remote.push_back(0);
}
else
{
// Compute basis functions at mapped point
// Check if basis values are not zero, and add master, coeff and
// owner info for each dof in the block
auto cell_blocks = dofmap->cell_dofs(cell);
// Unroll local master dofs
sub_dofs.resize(cell_blocks.size() * bs);
for (std::size_t k = 0; k < cell_blocks.size(); k++)
for (int b = 0; b < bs; b++)
sub_dofs[k * bs + b] = cell_blocks[k] * bs + b;
auto parent_dofs = sub_to_parent(sub_dofs);
auto global_parent_dofs = parent_to_global(parent_dofs);
for (int b = 0; b < bs; b++)
{
int num_masters = 0;
for (std::size_t k = 0; k < cell_blocks.size(); k++)
{
// NOTE: Assuming value_size 0
if (const T val = scale * remote_basis_values(j, k, 0);
std::abs(val) > tol)
{
num_masters++;
masters_remote.push_back(global_parent_dofs[k * bs + b]);
coeffs_remote.push_back(val);
// NOTE assuming same ownership in collapsed sub as parent space
if (cell_blocks[k] < size_local)
owners_remote.push_back(rank);
else
{
owners_remote.push_back(
ghost_owners[cell_blocks[k] - size_local]);
}
}
}
r_masters += num_masters;
num_masters_per_slave_remote.push_back(num_masters);
}
}
}
num_remote_masters[i] += r_masters;
}
// Create inverse communicator
// Procs with possible masters -> slave block owners
MPI_Comm master_to_slave = MPI_COMM_NULL;
MPI_Dist_graph_create_adjacent(
mesh->comm(), (int)s_to_m_ranks.size(), s_to_m_ranks.data(),
s_to_m_weights.data(), (int)m_to_s_ranks.size(), m_to_s_ranks.data(),
m_to_s_weights.data(), MPI_INFO_NULL, false, &master_to_slave);
// Send data back to owning process
dolfinx_mpc::recv_data recv_data = dolfinx_mpc::send_master_data_to_owner<T>(
master_to_slave, num_remote_masters, num_remote_slaves, num_out_slaves,
num_masters_per_slave_remote, masters_remote, coeffs_remote,
owners_remote);
err = MPI_Comm_free(&master_to_slave);
dolfinx::MPI::check_error(mesh->comm(), err);
// Append found slaves/master pairs
dolfinx_mpc::append_master_data<T>(
recv_data, searching_dofs, slaves, masters, coeffs, owners,
num_masters_per_slave, parent_space.dofmap()->index_map->size_local(),
parent_space.dofmap()->index_map_bs());
// Distribute ghost data
dolfinx_mpc::mpc_data ghost_data = dolfinx_mpc::distribute_ghost_data<T>(
slaves, masters, coeffs, owners, num_masters_per_slave,
*parent_space.dofmap()->index_map, parent_space.dofmap()->index_map_bs());
// Add ghost data to existing arrays
std::vector<std::int32_t>& ghost_slaves = ghost_data.slaves;
slaves.insert(std::end(slaves), std::begin(ghost_slaves),
std::end(ghost_slaves));
std::vector<std::int64_t>& ghost_masters = ghost_data.masters;
masters.insert(std::end(masters), std::begin(ghost_masters),
std::end(ghost_masters));
std::vector<std::int32_t>& ghost_num = ghost_data.offsets;
num_masters_per_slave.insert(std::end(num_masters_per_slave),
std::begin(ghost_num), std::end(ghost_num));
std::vector<T>& ghost_coeffs = ghost_data.coeffs;
coeffs.insert(std::end(coeffs), std::begin(ghost_coeffs),
std::end(ghost_coeffs));
std::vector<std::int32_t>& ghost_owner_ranks = ghost_data.owners;
owners.insert(std::end(owners), std::begin(ghost_owner_ranks),
std::end(ghost_owner_ranks));
// Compute offsets
std::vector<std::int32_t> offsets(num_masters_per_slave.size() + 1, 0);
std::partial_sum(num_masters_per_slave.begin(), num_masters_per_slave.end(),
offsets.begin() + 1);
dolfinx_mpc::mpc_data<T> output;
output.offsets = offsets;
output.masters = masters;
output.coeffs = coeffs;
output.owners = owners;
output.slaves = slaves;
return output;
}
/// Create a periodic MPC condition given a geometrical relation between the
/// slave and master surface
/// @param[in] V The input function space (possibly a sub space)
/// @param[in] indicator Function marking tabulated degrees of freedom
/// @param[in] relation Function relating coordinates of the slave surface to
/// the master surface
/// @param[in] bcs List of Dirichlet BCs on the input space
/// @param[in] scale Scaling of the periodic condition
/// @param[in] collapse If true, the list of marked dofs is in the collapsed
/// input space
/// @returns The multi point constraint
template <typename T, std::floating_point U>
dolfinx_mpc::mpc_data<T> geometrical_condition(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<U>> V,
const std::function<std::vector<std::int8_t>(
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const U, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, 3,
MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent>>)>&
indicator,
const std::function<std::vector<U>(std::span<const U>)>& relation,
const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<T>>>& bcs,
T scale, bool collapse)
{
std::vector<std::int32_t> reduced_blocks;
if (collapse)
{
// Locate dofs in sub and parent space
std::pair<dolfinx::fem::FunctionSpace<U>, std::vector<int32_t>> sub_space
= V->collapse();
const dolfinx::fem::FunctionSpace<U>& V_sub = sub_space.first;
const std::vector<std::int32_t>& parent_map = sub_space.second;
std::array<std::vector<std::int32_t>, 2> slave_blocks
= dolfinx::fem::locate_dofs_geometrical<U>({*V.get(), V_sub},
indicator);
reduced_blocks.reserve(slave_blocks[0].size());
// Remove blocks in Dirichlet bcs
std::vector<std::int8_t> bc_marker
= dolfinx_mpc::is_bc<T>(*V, slave_blocks[0], bcs);
for (std::size_t i = 0; i < bc_marker.size(); i++)
if (!bc_marker[i])
reduced_blocks.push_back(slave_blocks[1][i]);
// Create sub space to parent map
auto sub_map
= [&parent_map](const std::int32_t& i) { return parent_map[i]; };
return _create_periodic_condition<T>(V_sub, std::span(reduced_blocks),
relation, scale, sub_map, *V);
}
else
{
std::vector<std::int32_t> slave_blocks
= dolfinx::fem::locate_dofs_geometrical(*V, indicator);
reduced_blocks.reserve(slave_blocks.size());
// Remove blocks in Dirichlet bcs
std::vector<std::int8_t> bc_marker
= dolfinx_mpc::is_bc<T>(*V, slave_blocks, bcs);
for (std::size_t i = 0; i < bc_marker.size(); i++)
if (!bc_marker[i])
reduced_blocks.push_back(slave_blocks[i]);
auto sub_map = [](const std::int32_t& dof) { return dof; };
return _create_periodic_condition<T>(*V, std::span(reduced_blocks),
relation, scale, sub_map, *V);
}
}
/// Create a periodic MPC on a given set of mesh entities, mapped to the
/// master surface by a relation function.
/// @param[in] V The input function space (possibly a sub space)
/// @param[in] meshtag Meshtag with set of entities
/// @param[in] tag The value of the mesh tag entities that should bec
/// considered as entities
/// @param[in] relation Function relating coordinates of the slave surface to
/// the master surface
/// @param[in] bcs List of Dirichlet BCs on the input space
/// @param[in] scale Scaling of the periodic condition
/// @param[in] collapse If true, the list of marked dofs is in the collapsed
/// input space
/// @returns The multi point constraint
template <typename T, std::floating_point U>
dolfinx_mpc::mpc_data<T> topological_condition(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<U>> V,
const std::shared_ptr<const dolfinx::mesh::MeshTags<std::int32_t>> meshtag,
const std::int32_t tag,
const std::function<std::vector<U>(std::span<const U>)>& relation,
const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<T>>>& bcs,
T scale, bool collapse)
{
std::vector<std::int32_t> entities = meshtag->find(tag);
V->mesh()->topology_mutable()->create_connectivity(
meshtag->dim(), V->mesh()->topology()->dim());
if (collapse)
{
// Locate dofs in sub and parent space
std::pair<dolfinx::fem::FunctionSpace<U>, std::vector<int32_t>> sub_space
= V->collapse();
const dolfinx::fem::FunctionSpace<U>& V_sub = sub_space.first;
const std::vector<std::int32_t>& parent_map = sub_space.second;
std::array<std::vector<std::int32_t>, 2> slave_blocks
= dolfinx::fem::locate_dofs_topological(*V->mesh()->topology_mutable(),
{*V->dofmap(), *V_sub.dofmap()},
meshtag->dim(), entities);
// Remove DirichletBC dofs from sub space
std::vector<std::int8_t> bc_marker
= dolfinx_mpc::is_bc<T>(*V, slave_blocks[0], bcs);
std::vector<std::int32_t> reduced_blocks;
for (std::size_t i = 0; i < bc_marker.size(); i++)
if (!bc_marker[i])
reduced_blocks.push_back(slave_blocks[1][i]);
// Create sub space to parent map
const auto sub_map
= [&parent_map](const std::int32_t& i) { return parent_map[i]; };
// Create mpc on sub space
dolfinx_mpc::mpc_data<T> sub_data = _create_periodic_condition<T>(
V_sub, std::span(reduced_blocks), relation, scale, sub_map, *V);
return sub_data;
}
else
{
std::vector<std::int32_t> slave_blocks
= dolfinx::fem::locate_dofs_topological(*V->mesh()->topology_mutable(),
*V->dofmap(), meshtag->dim(),
entities);
const std::vector<std::int8_t> bc_marker
= dolfinx_mpc::is_bc<T>(*V, slave_blocks, bcs);
std::vector<std::int32_t> reduced_blocks;
for (std::size_t i = 0; i < bc_marker.size(); i++)
if (!bc_marker[i])
reduced_blocks.push_back(slave_blocks[i]);
// Identity map
const auto sub_map = [](const std::int32_t& dof) { return dof; };
return _create_periodic_condition<T, U>(*V, std::span(reduced_blocks),
relation, scale, sub_map, *V);
}
};
} // namespace impl
namespace dolfinx_mpc
{
mpc_data<double> create_periodic_condition_geometrical(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<double>> V,
const std::function<std::vector<std::int8_t>(
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const double,
MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, 3,
MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent>>)>& indicator,
const std::function<std::vector<double>(std::span<const double>)>& relation,
const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<double>>>&
bcs,
double scale, bool collapse)
{
return impl::geometrical_condition<double, double>(V, indicator, relation,
bcs, scale, collapse);
}
mpc_data<std::complex<double>> create_periodic_condition_geometrical(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<double>> V,
const std::function<std::vector<std::int8_t>(
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const double,
MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, 3,
MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent>>)>& indicator,
const std::function<std::vector<double>(std::span<const double>)>& relation,
const std::vector<
std::shared_ptr<const dolfinx::fem::DirichletBC<std::complex<double>>>>&
bcs,
std::complex<double> scale, bool collapse)
{
return impl::geometrical_condition<std::complex<double>, double>(
V, indicator, relation, bcs, scale, collapse);
}
mpc_data<double> create_periodic_condition_topological(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<double>> V,
const std::shared_ptr<const dolfinx::mesh::MeshTags<std::int32_t>> meshtag,
const std::int32_t tag,
const std::function<std::vector<double>(std::span<const double>)>& relation,
const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<double>>>&
bcs,
double scale, bool collapse)
{
return impl::topological_condition<double, double>(V, meshtag, tag, relation,
bcs, scale, collapse);
}
mpc_data<std::complex<double>> create_periodic_condition_topological(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<double>> V,
const std::shared_ptr<const dolfinx::mesh::MeshTags<std::int32_t>> meshtag,
const std::int32_t tag,
const std::function<std::vector<double>(std::span<const double>)>& relation,
const std::vector<
std::shared_ptr<const dolfinx::fem::DirichletBC<std::complex<double>>>>&
bcs,
std::complex<double> scale, bool collapse)
{
return impl::topological_condition<std::complex<double>, double>(
V, meshtag, tag, relation, bcs, scale, collapse);
}
mpc_data<float> create_periodic_condition_geometrical(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<float>> V,
const std::function<std::vector<std::int8_t>(
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const float, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, 3,
MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent>>)>&
indicator,
const std::function<std::vector<float>(std::span<const float>)>& relation,
const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<float>>>&
bcs,
float scale, bool collapse)
{
return impl::geometrical_condition<float, float>(V, indicator, relation, bcs,
scale, collapse);
}
mpc_data<std::complex<float>> create_periodic_condition_geometrical(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<float>> V,
const std::function<std::vector<std::int8_t>(
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const float, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<
std::size_t, 3,
MDSPAN_IMPL_STANDARD_NAMESPACE::dynamic_extent>>)>&
indicator,
const std::function<std::vector<float>(std::span<const float>)>& relation,
const std::vector<
std::shared_ptr<const dolfinx::fem::DirichletBC<std::complex<float>>>>&
bcs,
std::complex<float> scale, bool collapse)
{
return impl::geometrical_condition<std::complex<float>, float>(
V, indicator, relation, bcs, scale, collapse);
}
mpc_data<float> create_periodic_condition_topological(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<float>> V,
const std::shared_ptr<const dolfinx::mesh::MeshTags<std::int32_t>> meshtag,
const std::int32_t tag,
const std::function<std::vector<float>(std::span<const float>)>& relation,
const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<float>>>&
bcs,
float scale, bool collapse)
{
return impl::topological_condition<float, float>(V, meshtag, tag, relation,
bcs, scale, collapse);
}
mpc_data<std::complex<float>> create_periodic_condition_topological(
const std::shared_ptr<const dolfinx::fem::FunctionSpace<float>> V,
const std::shared_ptr<const dolfinx::mesh::MeshTags<std::int32_t>> meshtag,
const std::int32_t tag,
const std::function<std::vector<float>(std::span<const float>)>& relation,
const std::vector<
std::shared_ptr<const dolfinx::fem::DirichletBC<std::complex<float>>>>&
bcs,
std::complex<float> scale, bool collapse)
{
return impl::topological_condition<std::complex<float>, float>(
V, meshtag, tag, relation, bcs, scale, collapse);
}
} // namespace dolfinx_mpc
|