1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
// Copyright (C) 2020-2022 Jorgen S. Dokken, Nathan Sime, and Connor D. Pierce
//
// This file is part of DOLFINX_MPC
//
// SPDX-License-Identifier: MIT
#include "assemble_matrix.h"
#include <assemble_utils.h>
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/DirichletBC.h>
#include <dolfinx/fem/assembler.h>
#include <dolfinx/fem/utils.h>
using mdspan2_t = MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const std::int32_t,
MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>;
namespace
{
/// Given an assembled element matrix Ae, remove all entries (i,j) where both i
/// and j corresponds to a slave degree of freedom
/// @param[in,out] Ae_stripped The matrix Ae stripped of all other entries
/// @param[in] Ae The element matrix
/// @param[in] num_dofs The number of degrees of freedom in each row and column
/// (blocked)
/// @param[in] bs The block size for the rows and columns
/// @param[in] is_slave Marker indicating if a dof (local to process) is a slave
/// degree of freedom
/// @param[in] dofs Map from index local to cell to index local to process for
/// rows rows and columns
/// @returns The matrix stripped of slave contributions
template <typename T>
void fill_stripped_matrix(
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
Ae_stripped,
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
Ae,
const std::array<const std::uint32_t, 2>& num_dofs,
const std::array<const int, 2>& bs,
const std::array<std::span<const std::int8_t>, 2>& is_slave,
const std::array<std::span<const std::int32_t>, 2>& dofs)
{
const auto& [row_bs, col_bs] = bs;
const auto& [num_row_dofs, num_col_dofs] = num_dofs;
const auto& [row_dofs, col_dofs] = dofs;
const auto& [slave_rows, slave_cols] = is_slave;
assert(Ae_stripped.extent(0) == Ae.extent(0));
assert(Ae_stripped.extent(1) == Ae.extent(1));
// Strip Ae of all entries where both i and j are slaves
bool slave_row;
bool slave_col;
for (std::uint32_t i = 0; i < num_row_dofs; i++)
{
const int row_block = row_dofs[i] * row_bs;
for (int row = 0; row < row_bs; row++)
{
slave_row = slave_rows[row_block + row];
const int l_row = i * row_bs + row;
for (std::uint32_t j = 0; j < num_col_dofs; j++)
{
const int col_block = col_dofs[j] * col_bs;
for (int col = 0; col < col_bs; col++)
{
slave_col = slave_cols[col_block + col];
const int l_col = j * col_bs + col;
Ae_stripped(l_row, l_col)
= (slave_row && slave_col) ? T(0.0) : Ae(l_row, l_col);
}
}
}
}
};
/// Modify local element matrix Ae with MPC contributions, and insert non-local
/// contributions in the correct places
///
/// @param[in] mat_set Function that sets a local matrix into specified
/// positions of the global matrix A
/// @param[in] num_dofs The number of degrees of freedom in each row and column
/// (blocked)
/// @param[in, out] Ae The local element matrix
/// @param[in] dofs The local indices of the row and column dofs (blocked)
/// @param[in] bs The row and column block size
/// @param[in] slaves The row and column slave indices (local to process)
/// @param[in] masters Row and column map from the slave indices (local to
/// process) to the master dofs (local to process)
/// @param[in] coefficients row and column map from the slave indices (local to
/// process) to the corresponding coefficients
/// @param[in] is_slave Marker indicating if a dof (local to process) is a slave
/// dof
/// @param[in] scratch_memory Memory used in computations of additional element
/// matrices and rows. Should be at least 2 * num_rows(Ae) * num_cols(Ae) +
/// num_cols(Ae) + num_rows(Ae)
template <typename T>
void modify_mpc_cell(
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>, std::span<const T>)>&
mat_set,
const std::array<const std::uint32_t, 2>& num_dofs,
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
Ae,
const std::array<std::span<const std::int32_t>, 2>& dofs,
const std::array<const int, 2>& bs,
const std::array<std::span<const std::int32_t>, 2>& slaves,
const std::array<
std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>, 2>&
masters,
const std::array<std::shared_ptr<const dolfinx::graph::AdjacencyList<T>>,
2>& coeffs,
const std::array<std::span<const std::int8_t>, 2>& is_slave,
std::span<T> scratch_memory)
{
std::array<std::size_t, 2> num_flattened_masters = {0, 0};
std::array<std::vector<std::int32_t>, 2> local_index;
for (int axis = 0; axis < 2; ++axis)
{
// NOTE: Should this be moved into the MPC constructor?
// Locate which local dofs are slave dofs and compute the local index of the
// slave
local_index[axis] = dolfinx_mpc::compute_local_slave_index(
slaves[axis], num_dofs[axis], bs[axis], dofs[axis], is_slave[axis]);
// Count number of masters in flattened structure for the rows and columns
for (std::uint32_t i = 0; i < num_dofs[axis]; i++)
{
for (int j = 0; j < bs[axis]; j++)
{
const std::int32_t dof = dofs[axis][i] * bs[axis] + j;
if (is_slave[axis][dof])
num_flattened_masters[axis] += masters[axis]->links(dof).size();
}
}
}
const int ndim0 = bs[0] * num_dofs[0];
const int ndim1 = bs[1] * num_dofs[1];
assert(scratch_memory.size()
>= std::size_t(2 * ndim0 * ndim1 + ndim0 + ndim1));
std::ranges::fill(scratch_memory, T(0));
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
Ae_original(scratch_memory.data(), ndim0, ndim1);
// Copy Ae into new matrix for distirbution of master dofs
std::ranges::copy_n(Ae.data_handle(), ndim0 * ndim1,
Ae_original.data_handle());
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
Ae_stripped(std::next(scratch_memory.data(), ndim0 * ndim1), ndim0,
ndim1);
// Build matrix where all slave-slave entries are 0 for usage to row and
// column addition
fill_stripped_matrix(Ae_stripped, Ae, num_dofs, bs, is_slave, dofs);
// Zero out slave entries in element matrix
// Zero slave row
std::ranges::for_each(local_index[0],
[&Ae, ndim1](const auto dof) {
std::ranges::fill_n(
std::next(Ae.data_handle(), ndim1 * dof), ndim1,
0.0);
});
// Zero slave column
std::ranges::for_each(local_index[1],
[&Ae, ndim0](const auto dof)
{
for (int row = 0; row < ndim0; ++row)
Ae(row, dof) = 0.0;
});
// Flatten slaves, masters and coeffs for efficient
// modification of the matrices
std::array<std::vector<std::int32_t>, 2> flattened_masters;
std::array<std::vector<std::int32_t>, 2> flattened_slaves;
std::array<std::vector<T>, 2> flattened_coeffs;
for (std::int8_t axis = 0; axis < 2; axis++)
{
flattened_masters[axis].reserve(num_flattened_masters[axis]);
flattened_slaves[axis].reserve(num_flattened_masters[axis]);
flattened_coeffs[axis].reserve(num_flattened_masters[axis]);
for (std::size_t i = 0; i < slaves[axis].size(); i++)
{
auto _masters = masters[axis]->links(slaves[axis][i]);
auto _coeffs = coeffs[axis]->links(slaves[axis][i]);
for (std::size_t j = 0; j < _masters.size(); j++)
{
flattened_slaves[axis].push_back(local_index[axis][i]);
flattened_masters[axis].push_back(_masters[j]);
flattened_coeffs[axis].push_back(_coeffs[j]);
}
}
}
for (std::int8_t axis = 0; axis < 2; ++axis)
assert(num_flattened_masters[axis] == flattened_masters[axis].size());
// Data structures used for insertion of master contributions
std::array<std::int32_t, 1> row;
std::array<std::int32_t, 1> col;
std::array<T, 1> A0;
auto Arow = scratch_memory.subspan(2 * ndim0 * ndim1, ndim0);
auto Acol = scratch_memory.subspan(2 * ndim0 * ndim1 + ndim0, ndim1);
// Loop over all masters for the MPC applied to rows.
// Insert contributions in columns
std::vector<std::int32_t> unrolled_dofs(ndim1);
for (std::size_t i = 0; i < num_flattened_masters[0]; ++i)
{
// Use the standard transpose for type double, Hermitian transpose
// for type std::complex<double>. Do this outside the j-loop so
// std::conj() is only computed once per entry in flattened_masters.
T coeff_i;
if constexpr (std::is_scalar_v<T>)
coeff_i = flattened_coeffs[0][i];
else
coeff_i = std::conj(flattened_coeffs[0][i]);
// Unroll dof blocks and add column contribution
for (std::uint32_t j = 0; j < num_dofs[1]; ++j)
for (int k = 0; k < bs[1]; ++k)
{
Acol[j * bs[1] + k]
= coeff_i * Ae_stripped(flattened_slaves[0][i], j * bs[1] + k);
unrolled_dofs[j * bs[1] + k] = dofs[1][j] * bs[1] + k;
}
// Insert modified entries
row[0] = flattened_masters[0][i];
mat_set(row, unrolled_dofs, Acol);
// Loop through other masters on the same cell and add in contribution
for (std::size_t j = 0; j < num_flattened_masters[1]; ++j)
{
col[0] = flattened_masters[1][j];
A0[0] = coeff_i * flattened_coeffs[1][j]
* Ae_original(flattened_slaves[0][i], flattened_slaves[1][j]);
mat_set(row, col, A0);
}
}
// Loop over all masters for the MPC applied to columns.
// Insert contributions in rows
unrolled_dofs.resize(ndim0);
for (std::size_t i = 0; i < num_flattened_masters[1]; ++i)
{
// Unroll dof blocks and compute row contribution
for (std::uint32_t j = 0; j < num_dofs[0]; ++j)
for (int k = 0; k < bs[0]; ++k)
{
Arow[j * bs[0] + k]
= flattened_coeffs[1][i]
* Ae_stripped(j * bs[0] + k, flattened_slaves[1][i]);
unrolled_dofs[j * bs[0] + k] = dofs[0][j] * bs[0] + k;
}
// Insert modified entries
col[0] = flattened_masters[1][i];
mat_set(unrolled_dofs, col, Arow);
}
} // namespace
//-----------------------------------------------------------------------------
template <typename T, std::floating_point U>
void assemble_exterior_facets(
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const T>)>& mat_add_block_values,
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const T>)>& mat_add_values,
const dolfinx::mesh::Mesh<U>& mesh, std::span<const std::int32_t> facets,
const std::function<void(const std::span<T>&,
const std::span<const std::uint32_t>&,
std::int32_t, int)>& apply_dof_transformation,
const dolfinx::fem::DofMap& dofmap0,
const std::function<
void(const std::span<T>&, const std::span<const std::uint32_t>&,
std::int32_t, int)>& apply_dof_transformation_to_transpose,
const dolfinx::fem::DofMap& dofmap1, const std::vector<std::int8_t>& bc0,
const std::vector<std::int8_t>& bc1,
const std::function<void(T*, const T*, const T*, const U*, const int*,
const std::uint8_t*)>& kernel,
const std::span<const T> coeffs, int cstride,
const std::vector<T>& constants,
const std::span<const std::uint32_t>& cell_info,
const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc0,
const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc1)
{
// Get MPC data
const std::array<
std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>, 2>
masters = {mpc0->masters(), mpc1->masters()};
const std::array<std::shared_ptr<const dolfinx::graph::AdjacencyList<T>>, 2>
coefficients = {mpc0->coefficients(), mpc1->coefficients()};
const std::array<std::span<const std::int8_t>, 2> is_slave
= {mpc0->is_slave(), mpc1->is_slave()};
const std::array<
std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>, 2>
cell_to_slaves = {mpc0->cell_to_slaves(), mpc1->cell_to_slaves()};
// Get mesh data
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const std::int32_t,
MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
x_dofmap = mesh.geometry().dofmap();
const int num_dofs_g = x_dofmap.extent(1);
std::span<const U> x_g = mesh.geometry().x();
// Iterate over all facets
std::vector<U> coordinate_dofs(3 * num_dofs_g);
const auto num_dofs0 = (std::uint32_t)dofmap0.map().extent(1);
const auto num_dofs1 = (std::uint32_t)dofmap1.map().extent(1);
int bs0 = dofmap0.bs();
int bs1 = dofmap1.bs();
const std::uint32_t ndim0 = bs0 * num_dofs0;
const std::uint32_t ndim1 = bs1 * num_dofs1;
const std::array<const std::uint32_t, 2> num_dofs = {num_dofs0, num_dofs1};
const std::array<const int, 2> bs = {bs0, bs1};
std::vector<T> Aeb(ndim0 * ndim1);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
Ae(Aeb.data(), ndim0, ndim1);
const std::span<T> _Ae(Aeb);
std::vector<T> scratch_memory(2 * ndim0 * ndim1 + ndim0 + ndim1);
for (std::size_t l = 0; l < facets.size(); l += 2)
{
const std::int32_t cell = facets[l];
const int local_facet = facets[l + 1];
// Get cell vertex coordinates
auto x_dofs = MDSPAN_IMPL_STANDARD_NAMESPACE::submdspan(
x_dofmap, cell, MDSPAN_IMPL_STANDARD_NAMESPACE::full_extent);
for (std::size_t i = 0; i < x_dofs.size(); ++i)
{
std::ranges::copy_n(std::next(x_g.begin(), 3 * x_dofs[i]), 3,
std::next(coordinate_dofs.begin(), 3 * i));
}
// Tabulate tensor
std::ranges::fill(Aeb, 0);
kernel(Aeb.data(), coeffs.data() + l / 2 * cstride, constants.data(),
coordinate_dofs.data(), &local_facet, nullptr);
apply_dof_transformation(_Ae, cell_info, cell, ndim1);
apply_dof_transformation_to_transpose(_Ae, cell_info, cell, ndim0);
// Zero rows/columns for essential bcs
auto dmap0 = dofmap0.cell_dofs(cell);
auto dmap1 = dofmap1.cell_dofs(cell);
if (!bc0.empty())
{
for (std::uint32_t i = 0; i < num_dofs0; ++i)
{
for (int k = 0; k < bs0; ++k)
{
if (bc0[bs0 * dmap0[i] + k])
{
// Zero row bs0 * i + k
const int row = bs0 * i + k;
std::ranges::fill_n(std::next(Ae.data_handle(), ndim1 * row), ndim1,
0.0);
}
}
}
}
if (!bc1.empty())
{
for (std::size_t j = 0; j < num_dofs1; ++j)
{
for (int k = 0; k < bs1; ++k)
{
if (bc1[bs1 * dmap1[j] + k])
{
// Zero column bs1 * j + k
const int col = bs1 * j + k;
for (std::uint32_t row = 0; row < ndim0; ++row)
Aeb[row * ndim1 + col] = 0.0;
}
}
}
}
// Modify local element matrix Ae and insert contributions into master
// locations
if ((cell_to_slaves[0]->num_links(cell) > 0)
|| (cell_to_slaves[1]->num_links(cell) > 0))
{
const std::array<std::span<const std::int32_t>, 2> slaves
= {cell_to_slaves[0]->links(cell), cell_to_slaves[1]->links(cell)};
const std::array<std::span<const std::int32_t>, 2> dofs = {dmap0, dmap1};
modify_mpc_cell<T>(mat_add_values, num_dofs, Ae, dofs, bs, slaves,
masters, coefficients, is_slave, scratch_memory);
}
mat_add_block_values(dmap0, dmap1, Aeb);
}
} // namespace
//-----------------------------------------------------------------------------
template <typename T, std::floating_point U>
void assemble_cells_impl(
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const T>)>& mat_add_block_values,
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const T>)>& mat_add_values,
const dolfinx::mesh::Geometry<U>& geometry,
std::span<const std::int32_t> active_cells,
std::function<void(std::span<T>, const std::span<const std::uint32_t>,
const std::int32_t, const int)>
apply_dof_transformation,
const dolfinx::fem::DofMap& dofmap0,
std::function<void(std::span<T>, const std::span<const std::uint32_t>,
const std::int32_t, const int)>
apply_dof_transformation_to_transpose,
const dolfinx::fem::DofMap& dofmap1, const std::vector<std::int8_t>& bc0,
const std::vector<std::int8_t>& bc1,
const std::function<void(T*, const T*, const T*, const U*, const int*,
const std::uint8_t*)>& kernel,
const std::span<const T>& coeffs, int cstride,
const std::vector<T>& constants,
const std::span<const std::uint32_t>& cell_info,
const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc0,
const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc1)
{
// Get MPC data
const std::array<
std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>, 2>
masters = {mpc0->masters(), mpc1->masters()};
const std::array<std::shared_ptr<const dolfinx::graph::AdjacencyList<T>>, 2>
coefficients = {mpc0->coefficients(), mpc1->coefficients()};
const std::array<std::span<const std::int8_t>, 2> is_slave
= {mpc0->is_slave(), mpc1->is_slave()};
const std::array<
const std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>,
2>
cell_to_slaves = {mpc0->cell_to_slaves(), mpc1->cell_to_slaves()};
// Prepare cell geometry
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const std::int32_t,
MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
x_dofmap = geometry.dofmap();
const std::size_t num_dofs_g = x_dofmap.extent(1);
std::span<const U> x_g = geometry.x();
// Iterate over active cells
std::vector<U> coordinate_dofs(3 * num_dofs_g);
const auto num_dofs0 = (std::uint32_t)dofmap0.map().extent(1);
const auto num_dofs1 = (std::uint32_t)dofmap1.map().extent(1);
const std::array<const int, 2> bs = {dofmap0.bs(), dofmap1.bs()};
const std::uint32_t ndim0 = num_dofs0 * bs.front();
const std::uint32_t ndim1 = num_dofs1 * bs.back();
const std::array<const std::uint32_t, 2> num_dofs = {num_dofs0, num_dofs1};
std::vector<T> Aeb(ndim0 * ndim1);
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
Ae(Aeb.data(), ndim0, ndim1);
const std::span<T> _Ae(Aeb);
std::vector<T> scratch_memory(2 * ndim0 * ndim1 + ndim0 + ndim1);
for (std::size_t c = 0; c < active_cells.size(); c++)
{
const std::int32_t cell = active_cells[c];
// Get cell coordinates/geometry
auto x_dofs = MDSPAN_IMPL_STANDARD_NAMESPACE::submdspan(
x_dofmap, cell, MDSPAN_IMPL_STANDARD_NAMESPACE::full_extent);
for (std::size_t i = 0; i < x_dofs.size(); ++i)
{
std::ranges::copy_n(std::next(x_g.begin(), 3 * x_dofs[i]), 3,
std::next(coordinate_dofs.begin(), 3 * i));
}
// Tabulate tensor
std::ranges::fill(Aeb, 0);
kernel(Aeb.data(), coeffs.data() + c * cstride, constants.data(),
coordinate_dofs.data(), nullptr, nullptr);
apply_dof_transformation(_Ae, cell_info, cell, ndim1);
apply_dof_transformation_to_transpose(_Ae, cell_info, cell, ndim0);
// Zero rows/columns for essential bcs
std::span<const std::int32_t> dofs0 = dofmap0.cell_dofs(cell);
std::span<const std::int32_t> dofs1 = dofmap1.cell_dofs(cell);
if (!bc0.empty())
{
for (std::uint32_t i = 0; i < num_dofs0; ++i)
{
for (std::int32_t k = 0; k < bs.front(); ++k)
{
if (bc0[bs.front() * dofs0[i] + k])
std::ranges::fill_n(
std::next(Aeb.begin(), ndim1 * (bs.front() * i + k)), ndim1,
T(0));
}
}
}
if (!bc1.empty())
{
for (std::uint32_t j = 0; j < num_dofs1; ++j)
for (std::int32_t k = 0; k < bs.back(); ++k)
if (bc1[bs.back() * dofs1[j] + k])
for (std::size_t l = 0; l < ndim0; ++l)
Aeb[l * ndim1 + bs.back() * j + k] = 0;
}
// Modify local element matrix Ae and insert contributions into master
// locations
if ((cell_to_slaves[0]->num_links(cell) > 0)
|| (cell_to_slaves[1]->num_links(cell) > 0))
{
const std::array<std::span<const std::int32_t>, 2> slaves
= {cell_to_slaves[0]->links(cell), cell_to_slaves[1]->links(cell)};
const std::array<std::span<const std::int32_t>, 2> dofs = {dofs0, dofs1};
modify_mpc_cell<T>(mat_add_values, num_dofs, Ae, dofs, bs, slaves,
masters, coefficients, is_slave, scratch_memory);
}
mat_add_block_values(dofs0, dofs1, _Ae);
}
}
//-----------------------------------------------------------------------------
template <typename T, std::floating_point U>
void assemble_matrix_impl(
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const T>)>& mat_add_block_values,
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const T>)>& mat_add_values,
const dolfinx::fem::Form<T>& a, const std::vector<std::int8_t>& bc0,
const std::vector<std::int8_t>& bc1,
const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc0,
const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc1)
{
auto mesh = a.mesh();
assert(mesh);
// Get dofmap data
std::shared_ptr<const dolfinx::fem::DofMap> dofmap0
= a.function_spaces().at(0)->dofmap();
std::shared_ptr<const dolfinx::fem::DofMap> dofmap1
= a.function_spaces().at(1)->dofmap();
assert(dofmap0);
assert(dofmap1);
// Prepare constants
const std::vector<T> constants = pack_constants(a);
// Prepare coefficients
auto coeff_vec = dolfinx::fem::allocate_coefficient_storage(a);
dolfinx::fem::pack_coefficients(a, coeff_vec);
auto coefficients = dolfinx::fem::make_coefficients_span(coeff_vec);
auto element0 = a.function_spaces().at(0)->element();
auto element1 = a.function_spaces().at(1)->element();
std::function<void(std::span<T>, const std::span<const std::uint32_t>,
const std::int32_t, const int)>
apply_dof_transformation = element0->template dof_transformation_fn<T>(
dolfinx::fem::doftransform::standard);
std::function<void(std::span<T>, const std::span<const std::uint32_t>,
const std::int32_t, const int)>
apply_dof_transformation_to_transpose
= element1->template dof_transformation_right_fn<T>(
dolfinx::fem::doftransform::transpose);
const bool needs_transformation_data
= element0->needs_dof_transformations()
or element1->needs_dof_transformations()
or a.needs_facet_permutations();
std::span<const std::uint32_t> cell_info;
if (needs_transformation_data)
{
mesh->topology_mutable()->create_entity_permutations();
cell_info = std::span(mesh->topology()->get_cell_permutation_info());
}
for (int i : a.integral_ids(dolfinx::fem::IntegralType::cell))
{
const auto& fn = a.kernel(dolfinx::fem::IntegralType::cell, i);
const auto& [coeffs, cstride]
= coefficients.at({dolfinx::fem::IntegralType::cell, i});
std::span<const std::int32_t> active_cells
= a.domain(dolfinx::fem::IntegralType::cell, i);
assemble_cells_impl<T>(
mat_add_block_values, mat_add_values, mesh->geometry(), active_cells,
apply_dof_transformation, *dofmap0,
apply_dof_transformation_to_transpose, *dofmap1, bc0, bc1, fn, coeffs,
cstride, constants, cell_info, mpc0, mpc1);
}
for (int i : a.integral_ids(dolfinx::fem::IntegralType::exterior_facet))
{
const auto& fn = a.kernel(dolfinx::fem::IntegralType::exterior_facet, i);
const auto& [coeffs, cstride]
= coefficients.at({dolfinx::fem::IntegralType::exterior_facet, i});
std::span<const std::int32_t> facets
= a.domain(dolfinx::fem::IntegralType::exterior_facet, i);
assemble_exterior_facets<T>(mat_add_block_values, mat_add_values, *mesh,
facets, apply_dof_transformation, *dofmap0,
apply_dof_transformation_to_transpose, *dofmap1,
bc0, bc1, fn, coeffs, cstride, constants,
cell_info, mpc0, mpc1);
}
// if (a.num_integrals(dolfinx::fem::IntegralType::interior_facet) > 0)
// {
// throw std::runtime_error("Not implemented yet");
// // const int tdim = mesh->topology()->dim();
// // mesh->topology_mutable().create_connectivity(tdim - 1, tdim);
// // mesh->topology_mutable().create_entity_permutations();
// // std::function<std::uint8_t(std::size_t)> get_perm;
// // if (a.needs_facet_permutations())
// // {
// // mesh->topology_mutable().create_entity_permutations();
// // const std::vector<std::uint8_t>& perms
// // = mesh->topology()->get_facet_permutations();
// // get_perm = [&perms](std::size_t i) { return perms[i]; };
// // }
// // else
// // get_perm = [](std::size_t) { return 0; };
// }
}
//-----------------------------------------------------------------------------
template <typename T, std::floating_point U>
void _assemble_matrix(
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const T>&)>& mat_add_block,
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const T>&)>& mat_add,
const dolfinx::fem::Form<T>& a,
const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc0,
const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc1,
const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<T>>>& bcs,
const T diagval)
{
dolfinx::common::Timer timer("~MPC: Assemble matrix (C++)");
// Index maps for dof ranges
std::shared_ptr<const dolfinx::common::IndexMap> map0
= a.function_spaces().at(0)->dofmap()->index_map;
std::shared_ptr<const dolfinx::common::IndexMap> map1
= a.function_spaces().at(1)->dofmap()->index_map;
int bs0 = a.function_spaces().at(0)->dofmap()->index_map_bs();
int bs1 = a.function_spaces().at(1)->dofmap()->index_map_bs();
// Build dof markers
std::vector<std::int8_t> dof_marker0, dof_marker1;
std::int32_t dim0 = bs0 * (map0->size_local() + map0->num_ghosts());
std::int32_t dim1 = bs1 * (map1->size_local() + map1->num_ghosts());
for (std::size_t k = 0; k < bcs.size(); ++k)
{
assert(bcs[k]);
assert(bcs[k]->function_space());
if (a.function_spaces().at(0)->contains(*bcs[k]->function_space()))
{
dof_marker0.resize(dim0, false);
bcs[k]->mark_dofs(dof_marker0);
}
if (a.function_spaces().at(1)->contains(*bcs[k]->function_space()))
{
dof_marker1.resize(dim1, false);
bcs[k]->mark_dofs(dof_marker1);
}
}
// Assemble
assemble_matrix_impl<T>(mat_add_block, mat_add, a, dof_marker0, dof_marker1,
mpc0, mpc1);
// Add diagval on diagonal for slave dofs
if (mpc0->function_space() == mpc1->function_space())
{
const std::vector<std::int32_t>& slaves = mpc0->slaves();
const std::int32_t num_local_slaves = mpc0->num_local_slaves();
std::vector<std::int32_t> diag_dof(1);
std::vector<T> diag_value(1);
diag_value[0] = diagval;
for (std::int32_t i = 0; i < num_local_slaves; ++i)
{
diag_dof[0] = slaves[i];
mat_add(diag_dof, diag_dof, diag_value);
}
}
timer.stop();
}
} // namespace
//-----------------------------------------------------------------------------
void dolfinx_mpc::assemble_matrix(
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const double>&)>& mat_add_block,
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const double>&)>& mat_add,
const dolfinx::fem::Form<double>& a,
const std::shared_ptr<
const dolfinx_mpc::MultiPointConstraint<double, double>>& mpc0,
const std::shared_ptr<
const dolfinx_mpc::MultiPointConstraint<double, double>>& mpc1,
const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<double>>>&
bcs,
const double diagval)
{
_assemble_matrix(mat_add_block, mat_add, a, mpc0, mpc1, bcs, diagval);
}
//-----------------------------------------------------------------------------
void dolfinx_mpc::assemble_matrix(
const std::function<
int(std::span<const std::int32_t>, std::span<const std::int32_t>,
const std::span<const std::complex<double>>&)>& mat_add_block,
const std::function<
int(std::span<const std::int32_t>, std::span<const std::int32_t>,
const std::span<const std::complex<double>>&)>& mat_add,
const dolfinx::fem::Form<std::complex<double>>& a,
const std::shared_ptr<
const dolfinx_mpc::MultiPointConstraint<std::complex<double>, double>>&
mpc0,
const std::shared_ptr<
const dolfinx_mpc::MultiPointConstraint<std::complex<double>, double>>&
mpc1,
const std::vector<
std::shared_ptr<const dolfinx::fem::DirichletBC<std::complex<double>>>>&
bcs,
const std::complex<double> diagval)
{
_assemble_matrix(mat_add_block, mat_add, a, mpc0, mpc1, bcs, diagval);
}
//-----------------------------------------------------------------------------
void dolfinx_mpc::assemble_matrix(
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const float>&)>& mat_add_block,
const std::function<int(std::span<const std::int32_t>,
std::span<const std::int32_t>,
const std::span<const float>&)>& mat_add,
const dolfinx::fem::Form<float>& a,
const std::shared_ptr<
const dolfinx_mpc::MultiPointConstraint<float, float>>& mpc0,
const std::shared_ptr<
const dolfinx_mpc::MultiPointConstraint<float, float>>& mpc1,
const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<float>>>&
bcs,
const float diagval)
{
_assemble_matrix(mat_add_block, mat_add, a, mpc0, mpc1, bcs, diagval);
}
//-----------------------------------------------------------------------------
void dolfinx_mpc::assemble_matrix(
const std::function<
int(std::span<const std::int32_t>, std::span<const std::int32_t>,
const std::span<const std::complex<float>>&)>& mat_add_block,
const std::function<
int(std::span<const std::int32_t>, std::span<const std::int32_t>,
const std::span<const std::complex<float>>&)>& mat_add,
const dolfinx::fem::Form<std::complex<float>>& a,
const std::shared_ptr<
const dolfinx_mpc::MultiPointConstraint<std::complex<float>, float>>&
mpc0,
const std::shared_ptr<
const dolfinx_mpc::MultiPointConstraint<std::complex<float>, float>>&
mpc1,
const std::vector<
std::shared_ptr<const dolfinx::fem::DirichletBC<std::complex<float>>>>&
bcs,
const std::complex<float> diagval)
{
_assemble_matrix(mat_add_block, mat_add, a, mpc0, mpc1, bcs, diagval);
}
|