File: assemble_vector.cpp

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (287 lines) | stat: -rw-r--r-- 11,226 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// Copyright (C) 2021 Jorgen S. Dokken & Nathan Sime
//
// This file is part of DOLFINX_MPC
//
// SPDX-License-Identifier:    MIT

#include "assemble_vector.h"
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/DirichletBC.h>
#include <dolfinx/fem/assembler.h>
#include <dolfinx/fem/utils.h>
#include <iostream>

using mdspan2_t = MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
    const std::int32_t,
    MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>;

namespace
{

/// Assemble an integration kernel over a set of active entities, described
/// through into vector of type T, and apply the multipoint constraint
/// @param[in, out] b The vector to assemble into
/// @param[in] active_entities The set of active entities.
/// @param[in] dofmap The dofmap
/// @param[in] mpc The multipoint constraint
/// @param[in] fetch_cells Function that fetches the cell index for an entity
/// in active_entities
/// @param[in] assemble_local_element_matrix Function f(be, index) that
/// assembles into a local element matrix for a given entity
/// @tparam T Scalar type for vector
/// @tparam e stride Stride for each entity in active_entities
template <typename T, std::floating_point U, std::size_t estride>
void _assemble_entities_impl(
    std::span<T> b, std::span<const std::int32_t> active_entities,
    const dolfinx::fem::DofMap& dofmap,
    const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc,
    const std::function<const std::int32_t(std::span<const std::int32_t>)>
        fetch_cells,
    const std::function<void(std::span<T>, std::span<const std::int32_t>,
                             std::size_t)>
        assemble_local_element_vector)
{

  // Get MPC data
  const std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>
      masters = mpc->masters();
  const std::shared_ptr<const dolfinx::graph::AdjacencyList<T>> coefficients
      = mpc->coefficients();
  std::span<const std::int8_t> is_slave = mpc->is_slave();
  const std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>
      cell_to_slaves = mpc->cell_to_slaves();

  // NOTE: Assertion that all links have the same size (no P refinement)
  const std::size_t num_dofs = dofmap.map().extent(1);
  int bs = dofmap.bs();
  std::vector<T> be(bs * num_dofs);
  const std::span<T> _be(be);
  std::vector<T> be_copy(bs * num_dofs);
  const std::span<T> _be_copy(be_copy);

  // Assemble over all entities
  for (std::size_t e = 0; e < active_entities.size(); e += estride)
  {
    std::span<const std::int32_t> entity = active_entities.subspan(e, estride);
    // Assemble into element vector
    assemble_local_element_vector(_be, entity, e / estride);

    const std::int32_t cell = fetch_cells(entity);
    auto dofs = dofmap.cell_dofs(cell);

    // Modify local element matrix if entity is connected to a slave cell
    std::span<const std::int32_t> slaves = cell_to_slaves->links(cell);
    if (!slaves.empty())
    {
      // Modify element vector for MPC and insert into b for non-local
      // contributions
      std::ranges::copy(be, be_copy.begin());
      dolfinx_mpc::modify_mpc_vec<T>(b, _be, _be_copy, dofs, num_dofs, bs,
                                     is_slave, slaves, masters, coefficients);
    }

    // Add local contribution to b
    for (std::size_t i = 0; i < num_dofs; ++i)
      for (int k = 0; k < bs; ++k)
        b[bs * dofs[i] + k] += be[bs * i + k];
  }
}

template <typename T, std::floating_point U>
void _assemble_vector(
    std::span<T> b, const dolfinx::fem::Form<T>& L,
    const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc)
{

  const auto mesh = L.mesh();
  assert(mesh);

  // Get dofmap data
  std::shared_ptr<const dolfinx::fem::DofMap> dofmap
      = L.function_spaces().at(0)->dofmap();
  assert(dofmap);

  // Prepare constants & coefficients
  const std::vector<T> constants = pack_constants(L);
  auto coeff_vec = dolfinx::fem::allocate_coefficient_storage(L);
  dolfinx::fem::pack_coefficients(L, coeff_vec);
  auto coefficients = dolfinx::fem::make_coefficients_span(coeff_vec);

  // Prepare cell geometry
  MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
      const std::int32_t,
      MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
      x_dofmap = mesh->geometry().dofmap();
  std::span<const U> x_g = mesh->geometry().x();

  // Prepare dof tranformation data
  auto element = L.function_spaces().at(0)->element();
  const std::function<void(const std::span<T>&,
                           const std::span<const std::uint32_t>&, std::int32_t,
                           int)>
      dof_transform = element->template dof_transformation_fn<T>(
          dolfinx::fem::doftransform::standard);
  const bool needs_transformation_data
      = element->needs_dof_transformations() or L.needs_facet_permutations();
  std::span<const std::uint32_t> cell_info;
  if (needs_transformation_data)
  {
    mesh->topology_mutable()->create_entity_permutations();
    cell_info = std::span(mesh->topology()->get_cell_permutation_info());
  }
  const std::size_t num_dofs_g = x_dofmap.extent(1);
  std::vector<U> coordinate_dofs(3 * num_dofs_g);

  if (L.num_integrals(dolfinx::fem::IntegralType::cell) > 0)
  {
    const auto fetch_cell
        = [&](std::span<const std::int32_t> entity) { return entity.front(); };
    for (int i : L.integral_ids(dolfinx::fem::IntegralType::cell))
    {
      const auto& coeffs
          = coefficients.at({dolfinx::fem::IntegralType::cell, i});
      const auto& fn = L.kernel(dolfinx::fem::IntegralType::cell, i);
      /// Assemble local cell kernels into a vector
      /// @param[in] be The local element vector
      /// @param[in] cell The cell index
      /// @param[in] index The index of the cell in the active_cells (To fetch
      /// the appropriate coefficients)
      const auto assemble_local_cell_vector
          = [&](std::span<T> be, std::span<const std::int32_t> entity,
                std::int32_t index)
      {
        auto cell = entity.front();

        // Fetch the coordinates of the cell
        auto x_dofs = MDSPAN_IMPL_STANDARD_NAMESPACE::submdspan(
            x_dofmap, cell, MDSPAN_IMPL_STANDARD_NAMESPACE::full_extent);
        for (std::size_t i = 0; i < x_dofs.size(); ++i)
        {
          std::ranges::copy_n(std::next(x_g.begin(), 3 * x_dofs[i]), 3,
                              std::next(coordinate_dofs.begin(), 3 * i));
        }

        // Tabulate tensor
        std::ranges::fill(be, 0);
        fn(be.data(), coeffs.first.data() + index * coeffs.second,
           constants.data(), coordinate_dofs.data(), nullptr, nullptr);

        // Apply any required transformations
        dof_transform(be, cell_info, cell, 1);
      };

      // Assemble over all active cells
      std::span<const std::int32_t> active_cells
          = L.domain(dolfinx::fem::IntegralType::cell, i);
      _assemble_entities_impl<T, U, 1>(b, active_cells, *dofmap, mpc,
                                       fetch_cell, assemble_local_cell_vector);
    }
  }
  // Prepare permutations for exterior and interior facet integrals
  if (L.num_integrals(dolfinx::fem::IntegralType::exterior_facet) > 0)
  {

    // Create lambda function fetching cell index from exterior facet entity
    auto fetch_cell = [](auto entity) { return entity.front(); };

    // Assemble exterior facet integral kernels
    for (int i : L.integral_ids(dolfinx::fem::IntegralType::exterior_facet))
    {
      const auto& fn = L.kernel(dolfinx::fem::IntegralType::exterior_facet, i);
      const auto& coeffs
          = coefficients.at({dolfinx::fem::IntegralType::exterior_facet, i});
      /// Assemble local exterior facet kernels into a vector
      /// @param[in] be The local element vector
      /// @param[in] entity The entity, given as a cell index and the local
      /// index relative to the cell
      /// @param[in] index The index of entity in active_facets
      const auto assemble_local_exterior_facet_vector
          = [&](std::span<T> be, std::span<const std::int32_t> entity,
                std::size_t index)
      {
        // Fetch the coordinates of the cell
        const std::int32_t cell = entity[0];
        const int local_facet = entity[1];
        auto x_dofs = MDSPAN_IMPL_STANDARD_NAMESPACE::submdspan(
            x_dofmap, cell, MDSPAN_IMPL_STANDARD_NAMESPACE::full_extent);
        for (std::size_t i = 0; i < x_dofs.size(); ++i)
        {
          std::ranges::copy_n(std::next(x_g.begin(), 3 * x_dofs[i]), 3,
                              std::next(coordinate_dofs.begin(), 3 * i));
        }

        // Tabulate tensor
        std::ranges::fill(be, 0);
        fn(be.data(), coeffs.first.data() + index * coeffs.second,
           constants.data(), coordinate_dofs.data(), &local_facet, nullptr);

        // Apply any required transformations
        dof_transform(be, cell_info, cell, 1);
      };

      // Assemble over all active cells
      std::span<const std::int32_t> active_facets
          = L.domain(dolfinx::fem::IntegralType::exterior_facet, i);
      _assemble_entities_impl<T, U, 2>(b, active_facets, *dofmap, mpc,
                                       fetch_cell,
                                       assemble_local_exterior_facet_vector);
    }
  }

  if (L.num_integrals(dolfinx::fem::IntegralType::interior_facet) > 0)
  {
    throw std::runtime_error(
        "Interior facet integrals currently not supported");
    // std::function<std::uint8_t(std::size_t)> get_perm;
    // if (L.needs_facet_permutations())
    // {
    //   const int tdim = mesh->topology()->dim();
    //   mesh->topology_mutable().create_connectivity(tdim - 1, tdim);
    //   mesh->topology_mutable().create_entity_permutations();
    //   const std::vector<std::uint8_t>& perms
    //       = mesh->topology()->get_facet_permutations();
    //   get_perm = [&perms](std::size_t i) { return perms[i]; };
    // }
    // else
    //   get_perm = [](std::size_t) { return 0; };
  }
}
} // namespace
//-----------------------------------------------------------------------------

void dolfinx_mpc::assemble_vector(
    std::span<double> b, const dolfinx::fem::Form<double>& L,
    const std::shared_ptr<
        const dolfinx_mpc::MultiPointConstraint<double, double>>& mpc)
{
  _assemble_vector<double>(b, L, mpc);
}

void dolfinx_mpc::assemble_vector(
    std::span<std::complex<double>> b,
    const dolfinx::fem::Form<std::complex<double>>& L,
    const std::shared_ptr<
        const dolfinx_mpc::MultiPointConstraint<std::complex<double>, double>>&
        mpc)
{
  _assemble_vector<std::complex<double>>(b, L, mpc);
}

void dolfinx_mpc::assemble_vector(
    std::span<float> b, const dolfinx::fem::Form<float>& L,
    const std::shared_ptr<
        const dolfinx_mpc::MultiPointConstraint<float, float>>& mpc)
{
  _assemble_vector<float>(b, L, mpc);
}

void dolfinx_mpc::assemble_vector(
    std::span<std::complex<float>> b,
    const dolfinx::fem::Form<std::complex<float>>& L,
    const std::shared_ptr<
        const dolfinx_mpc::MultiPointConstraint<std::complex<float>, float>>&
        mpc)
{
  _assemble_vector<std::complex<float>>(b, L, mpc);
}
//-----------------------------------------------------------------------------