File: lifting.h

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (621 lines) | stat: -rw-r--r-- 23,581 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// Copyright (C) 2021 Jorgen S. Dokken
//
// This file is part of DOLFINX_MPC
//
// SPDX-License-Identifier:    MIT

#pragma once

#include "MultiPointConstraint.h"
#include "assemble_vector.h"
#include <dolfinx/fem/Constant.h>
#include <dolfinx/fem/DirichletBC.h>
#include <dolfinx/fem/Form.h>
#include <dolfinx/fem/assembler.h>
#include <dolfinx/fem/utils.h>
#include <dolfinx/graph/AdjacencyList.h>
#include <dolfinx/mesh/Geometry.h>

namespace impl
{

/// Implementation of bc application (lifting) for an given a set of integration
/// entities
/// @tparam T The scalar type
/// @tparam E_DESC Description of the set of entities
/// @param[in, out] b The vector to apply lifting to
/// @param[in] active_entities Set of active entities (either cells, exterior
/// facets or interior facets in their specified format)
/// @param[in] dofmap0 The dofmap for the rows of the matrix
/// @param[in] dofmap0 The dofmap for the columns of the matrix
/// @param[in] bc_values1 Array of Dirichlet condition values for dofs local to
/// process
/// @param[in] bc_markers1 Array indicating what dofs local to process is in a
/// DirichletBC
/// @param[in] mpc1 Multipoint constraints to apply to the rows of the vector
/// @param[in] fetch_cells Function that fetches the cell index for each active
/// entity
/// @param[in] lift_local_vector Function that lift local matrix Ae into local
/// vector be, i.e. be <- be - scale * (A (g - x0))
/// @tparam T Scalartype of local vector
/// @tparam estride Stride in actiave entities
template <typename T, std::size_t estride, std::floating_point U>
void lift_bc_entities(
    std::span<T> b, std::span<const std::int32_t> active_entities,
    const dolfinx::fem::DofMap& dofmap0, const dolfinx::fem::DofMap& dofmap1,
    std::span<const T> bc_values1, std::span<const std::int8_t> bc_markers1,
    const dolfinx_mpc::MultiPointConstraint<T, U>& mpc1,
    const std::function<const std::int32_t(std::span<const std::int32_t>)>
        fetch_cells,
    const std::function<void(std::span<T>, std::span<T>, const int, const int,
                             std::span<const std::int32_t>, std::size_t)>
        lift_local_vector)
{
  const int bs0 = dofmap0.bs();
  const int bs1 = dofmap1.bs();
  // Get MPC data
  const std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>
      masters = mpc1.masters();
  const std::shared_ptr<const dolfinx::graph::AdjacencyList<T>> coefficients
      = mpc1.coefficients();
  std::span<const std::int8_t> is_slave = mpc1.is_slave();
  const std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>
      cell_to_slaves = mpc1.cell_to_slaves();

  const int num_dofs0 = dofmap0.map().extent(1);
  std::vector<T> be;
  std::vector<T> be_copy;
  std::vector<T> Ae;

  // Assemble over all entities
  for (std::size_t e = 0; e < active_entities.size(); e += estride)
  {
    auto entity = active_entities.subspan(e, estride);
    const std::int32_t cell = fetch_cells(entity);
    // Size data structure for assembly
    auto dmap0 = dofmap0.cell_dofs(cell);
    auto dmap1 = dofmap1.cell_dofs(cell);
    const int num_rows = bs0 * dmap0.size();
    const int num_cols = bs1 * dmap1.size();
    be.resize(num_rows);
    Ae.resize(num_rows * num_cols);

    // Check if bc is applied to entity
    bool has_bc = false;
    std::ranges::for_each(dmap1,
                          [&bc_markers1, bs1, &has_bc](const auto dof)
                          {
                            for (int k = 0; k < bs1; ++k)
                            {
                              assert(bs1 * dof + k < (int)bc_markers1.size());
                              if (bc_markers1[bs1 * dof + k])
                              {
                                has_bc = true;
                                break;
                              }
                            }
                          });
    if (!has_bc)
      continue;

    // Lift into local element vector
    const std::span<T> _be(be);
    const std::span<T> _Ae(Ae);
    lift_local_vector(_be, _Ae, num_rows, num_cols, entity, e / estride);
    // Modify local element matrix if entity is connected to a slave cell
    std::span<const std::int32_t> slaves = cell_to_slaves->links(cell);

    if (slaves.size() > 0)
    {
      // Modify element vector for MPC and insert into b for non-local
      // contributions
      be_copy.resize(num_rows);
      std::ranges::copy(be, be_copy.begin());
      const std::span<T> _be_copy(be_copy);
      dolfinx_mpc::modify_mpc_vec<T>(b, _be, _be_copy, dmap0, dmap0.size(), bs0,
                                     is_slave, slaves, masters, coefficients);
    }
    // Add local contribution to b
    for (int i = 0; i < num_dofs0; ++i)
      for (int k = 0; k < bs0; ++k)
        b[bs0 * dmap0[i] + k] += be[bs0 * i + k];
  }
};

/// Modify b such that:
///
///   b <- b - scale * K^T (A (g - x0))
///
/// The boundary conditions bcs are on the trial spaces V_j.
/// The forms in [a] must have the same test space as L (from
/// which b was built), but the trial space may differ
/// @param[in,out] b The vector to be modified
/// @param[in] a The bilinear forms, where a is the form that
/// generates A
/// @param[in] bcs List of boundary conditions
/// @param[in] x0 The function to subtract
/// @param[in] scale Scale of lifting
/// @param[in] mpc1 The multi point constraints
template <typename T, std::floating_point U>
void apply_lifting(
    std::span<T> b, const std::shared_ptr<const dolfinx::fem::Form<T>> a,
    const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<T>>>& bcs,
    const std::span<const T>& x0, T scale,
    const std::shared_ptr<const dolfinx_mpc::MultiPointConstraint<T, U>>& mpc1)
{
  const std::vector<T> constants = pack_constants(*a);
  auto coeff_vec = dolfinx::fem::allocate_coefficient_storage(*a);
  dolfinx::fem::pack_coefficients(*a, coeff_vec);
  auto coefficients = dolfinx::fem::make_coefficients_span(coeff_vec);
  std::span<const std::int8_t> is_slave = mpc1->is_slave();

  // Create 1D arrays of bc values and bc indicator
  std::vector<std::int8_t> bc_markers1;
  std::vector<T> bc_values1;
  assert(a->function_spaces().at(1));
  auto V1 = a->function_spaces().at(1);
  auto map1 = V1->dofmap()->index_map;
  const int bs1 = V1->dofmap()->index_map_bs();
  assert(map1);
  const int crange = bs1 * (map1->size_local() + map1->num_ghosts());
  bc_markers1.assign(crange, false);
  bc_values1.assign(crange, 0.0);
  for (const std::shared_ptr<const dolfinx::fem::DirichletBC<T>>& bc : bcs)
  {
    bc->mark_dofs(bc_markers1);
    bc->set(bc_values1, std::nullopt, 1);
  }

  // Extract dofmaps for columns and rows of a
  assert(a->function_spaces().at(0));
  auto dofmap1 = V1->dofmap();
  auto element1 = V1->element();
  auto dofmap0 = a->function_spaces()[0]->dofmap();
  const int bs0 = a->function_spaces()[0]->dofmap()->bs();
  auto element0 = a->function_spaces()[0]->element();

  const bool needs_transformation_data
      = element0->needs_dof_transformations()
        or element1->needs_dof_transformations()
        or a->needs_facet_permutations();

  auto mesh = a->function_spaces()[0]->mesh();

  // Prepare cell geometry

  MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
      const std::int32_t,
      MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
      x_dofmap = mesh->geometry().dofmap();
  std::span<const U> x_g = mesh->geometry().x();
  const int tdim = mesh->topology()->dim();
  const std::size_t num_dofs_g = x_dofmap.extent(1);
  std::vector<U> coordinate_dofs(3 * num_dofs_g);

  std::span<const std::uint32_t> cell_info;
  if (needs_transformation_data)
  {
    mesh->topology_mutable()->create_entity_permutations();
    cell_info = std::span(mesh->topology()->get_cell_permutation_info());
  }

  // Get dof-transformations for the element matrix
  const std::function<void(const std::span<T>&,
                           const std::span<const std::uint32_t>&, std::int32_t,
                           int)>
      dof_transform = element0->template dof_transformation_fn<T>(
          dolfinx::fem::doftransform::standard);
  const std::function<void(const std::span<T>&,
                           const std::span<const std::uint32_t>&, std::int32_t,
                           int)>
      dof_transform_to_transpose
      = element1->template dof_transformation_right_fn<T>(
          dolfinx::fem::doftransform::transpose);

  // Loop over cell integrals and lift bc
  if (a->num_integrals(dolfinx::fem::IntegralType::cell) > 0)
  {
    const auto fetch_cells
        = [&](std::span<const std::int32_t> entity) { return entity.front(); };
    for (int i : a->integral_ids(dolfinx::fem::IntegralType::cell))
    {
      const auto& coeffs
          = coefficients.at({dolfinx::fem::IntegralType::cell, i});
      const auto& kernel = a->kernel(dolfinx::fem::IntegralType::cell, i);

      // Function that lift bcs for cell kernels
      const auto lift_bcs_cell
          = [&](std::span<T> be, std::span<T> Ae, std::int32_t num_rows,
                std::int32_t num_cols, std::span<const std::int32_t> entity,
                std::size_t index)
      {
        auto cell = entity.front();

        // Fetch the coordinates of the cell
        auto x_dofs = MDSPAN_IMPL_STANDARD_NAMESPACE::submdspan(
            x_dofmap, cell, MDSPAN_IMPL_STANDARD_NAMESPACE::full_extent);
        for (std::size_t i = 0; i < x_dofs.size(); ++i)
        {
          std::ranges::copy_n(std::next(x_g.begin(), 3 * x_dofs[i]), 3,
                              std::next(coordinate_dofs.begin(), 3 * i));
        }

        // Tabulate tensor
        std::ranges::fill(Ae, 0);
        kernel(Ae.data(), coeffs.first.data() + index * coeffs.second,
               constants.data(), coordinate_dofs.data(), nullptr, nullptr);
        dof_transform(Ae, cell_info, cell, num_cols);
        dof_transform_to_transpose(Ae, cell_info, cell, num_rows);

        auto dmap1 = dofmap1->cell_dofs(cell);
        std::ranges::fill(be, 0);
        for (std::size_t j = 0; j < dmap1.size(); ++j)
        {
          for (std::int32_t k = 0; k < bs1; k++)
          {
            const std::int32_t jj = bs1 * dmap1[j] + k;
            assert(jj < (int)bc_markers1.size());
            // Add this in once we have interface for rhs of MPCs
            // MPCs overwrite Dirichlet conditions
            // if (is_slave[jj])
            // {
            //   // Lift MPC values
            //   const T val = mpc_consts[jj];
            //   for (int m = 0; m < num_rows; ++m)
            //     be[m] -= Ae[m * num_cols + bs1 * j + k] * val;
            // }
            // else
            if (bc_markers1[jj])
            {
              const T bc = bc_values1[jj];
              const T _x0 = x0.empty() ? 0.0 : x0[jj];
              for (int m = 0; m < num_rows; ++m)
                be[m] -= Ae[m * num_cols + bs1 * j + k] * scale * (bc - _x0);
            }
          }
        }
      };
      // Assemble over all active cells
      std::span<const std::int32_t> cells
          = a->domain(dolfinx::fem::IntegralType::cell, i);
      lift_bc_entities<T, 1>(b, cells, *dofmap0, *dofmap1,
                             std::span<const T>(bc_values1),
                             std::span<const std::int8_t>(bc_markers1), *mpc1,
                             fetch_cells, lift_bcs_cell);
    }
  }

  // Prepare permutations for exterior and interior facet integrals
  if (a->num_integrals(dolfinx::fem::IntegralType::exterior_facet) > 0)
  {
    // Create lambda function fetching cell index from exterior facet entity
    const auto fetch_cell
        = [&](std::span<const std::int32_t> entity) { return entity.front(); };

    // Get number of cells per facet to be able to get the facet permutation
    const int tdim = mesh->topology()->dim();
    for (int i : a->integral_ids(dolfinx::fem::IntegralType::exterior_facet))
    {
      const auto& coeffs
          = coefficients.at({dolfinx::fem::IntegralType::exterior_facet, i});
      const auto& kernel
          = a->kernel(dolfinx::fem::IntegralType::exterior_facet, i);

      /// Assemble local exterior facet kernels into a vector
      /// @param[in] be The local element vector
      /// @param[in] entity The entity, given as a cell index and the local
      /// index relative to the cell
      /// @param[in] index The index of the facet in the active_facets (To fetch
      /// the appropriate coefficients)
      const auto lift_bc_exterior_facet
          = [&](std::span<T> be, std::span<T> Ae, int num_rows, int num_cols,
                std::span<const std::int32_t> entity, std::size_t index)
      {
        // Fetch the coordiantes of the cell
        const std::int32_t cell = entity[0];
        const int local_facet = entity[1];

        // Fetch the coordinates of the cell
        auto x_dofs = MDSPAN_IMPL_STANDARD_NAMESPACE::submdspan(
            x_dofmap, cell, MDSPAN_IMPL_STANDARD_NAMESPACE::full_extent);
        for (std::size_t i = 0; i < x_dofs.size(); ++i)
        {
          std::ranges::copy_n(std::next(x_g.begin(), 3 * x_dofs[i]), 3,
                              std::next(coordinate_dofs.begin(), 3 * i));
        }

        // Tabulate tensor
        std::ranges::fill(Ae, 0);
        kernel(Ae.data(), coeffs.first.data() + index * coeffs.second,
               constants.data(), coordinate_dofs.data(), &local_facet, nullptr);
        dof_transform(Ae, cell_info, cell, num_cols);
        dof_transform_to_transpose(Ae, cell_info, cell, num_rows);

        auto dmap1 = dofmap1->cell_dofs(cell);
        std::ranges::fill(be, 0);
        for (std::size_t j = 0; j < dmap1.size(); ++j)
        {
          for (std::int32_t k = 0; k < bs1; k++)
          {
            const std::int32_t jj = bs1 * dmap1[j] + k;
            assert(jj < (int)bc_markers1.size());
            // Add this in once we have interface for rhs of MPCs
            // MPCs overwrite Dirichlet conditions
            // if (is_slave[jj])
            // {
            //   // Lift MPC values
            //   const T val = mpc_consts[jj];
            //   for (int m = 0; m < num_rows; ++m)
            //     be[m] -= Ae[m * num_cols + bs1 * j + k] * val;
            // }
            // else

            if (bc_markers1[jj])
            {
              const T bc = bc_values1[jj];
              const T _x0 = x0.empty() ? 0.0 : x0[jj];
              for (int m = 0; m < num_rows; ++m)
                be[m] -= Ae[m * num_cols + bs1 * j + k] * scale * (bc - _x0);
            }
          }
        }
      };

      // Assemble over all active cells
      std::span<const std::int32_t> active_facets
          = a->domain(dolfinx::fem::IntegralType::exterior_facet, i);
      impl::lift_bc_entities<T, 2>(b, active_facets, *dofmap0, *dofmap1,
                                   bc_values1, bc_markers1, *mpc1, fetch_cell,
                                   lift_bc_exterior_facet);
    }
  }
  if (a->num_integrals(dolfinx::fem::IntegralType::interior_facet) > 0)
  {
    throw std::runtime_error(
        "Interior facet integrals currently not supported");

    //   std::function<std::uint8_t(std::size_t)> get_perm;
    //   if (a->needs_facet_permutations())
    //   {
    //     mesh->topology_mutable().create_connectivity(tdim - 1, tdim);
    //     mesh->topology_mutable().create_entity_permutations();
    //     const std::vector<std::uint8_t>& perms
    //         = mesh->topology()->get_facet_permutations();
    //     get_perm = [&perms](std::size_t i) { return perms[i]; };
    //   }
    //   else
    //     get_perm = [](std::size_t) { return 0; };
  }
}
} // namespace impl

namespace dolfinx_mpc
{

/// Modify b such that:
///
///   b <- b - scale * K^T (A_j (g_j 0 x0_j))
///
/// where j is a block (nest) row index and K^T is the reduction matrix stemming
/// from the multi point constraint. For non - blocked problems j = 0.
/// The boundary conditions bcs1 are on the trial spaces V_j.
/// The forms in [a] must have the same test space as L (from
/// which b was built), but the trial space may differ. If x0 is not
/// supplied, then it is treated as 0.
/// @param[in,out] b The vector to be modified
/// @param[in] a The bilinear formss, where a[j] is the form that
/// generates A[j]
/// @param[in] bcs List of boundary conditions for each block, i.e. bcs1[2]
/// are the boundary conditions applied to the columns of a[2] / x0[2]
/// block.
/// @param[in] x0 The vectors used in the lifitng.
/// @param[in] scale Scaling to apply
/// @param[in] mpc The multi point constraints
void apply_lifting(
    std::span<double> b,
    const std::vector<std::shared_ptr<const dolfinx::fem::Form<double>>> a,
    const std::vector<
        std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<double>>>>&
        bcs1,
    const std::vector<std::span<const double>>& x0, double scale,
    const std::shared_ptr<
        const dolfinx_mpc::MultiPointConstraint<double, double>>& mpc)
{
  if (!x0.empty() and x0.size() != a.size())
  {
    throw std::runtime_error(
        "Mismatch in size between x0 and bilinear form in assembler.");
  }

  if (a.size() != bcs1.size())
  {
    throw std::runtime_error(
        "Mismatch in size between a and bcs in assembler.");
  }
  for (std::size_t j = 0; j < a.size(); ++j)
  {
    if (x0.empty())
    {
      impl::apply_lifting<double>(b, a[j], bcs1[j], std::span<const double>(),
                                  scale, mpc);
    }
    else
    {
      impl::apply_lifting<double>(b, a[j], bcs1[j], x0[j], scale, mpc);
    }
  }
}
/// Modify b such that:
///
///   b <- b - scale * K^T (A_j (g_j 0 x0_j))
///
/// where j is a block (nest) row index and K^T is the reduction matrix stemming
/// from the multi point constraint. For non - blocked problems j = 0.
/// The boundary conditions bcs1 are on the trial spaces V_j.
/// The forms in [a] must have the same test space as L (from
/// which b was built), but the trial space may differ. If x0 is not
/// supplied, then it is treated as 0.
/// @param[in,out] b The vector to be modified
/// @param[in] a The bilinear formss, where a[j] is the form that
/// generates A[j]
/// @param[in] bcs List of boundary conditions for each block, i.e. bcs1[2]
/// are the boundary conditions applied to the columns of a[2] / x0[2]
/// block.
/// @param[in] x0 The vectors used in the lifitng.
/// @param[in] scale Scaling to apply
/// @param[in] mpc The multi point constraints
void apply_lifting(
    std::span<std::complex<double>> b,
    const std::vector<
        std::shared_ptr<const dolfinx::fem::Form<std::complex<double>>>>
        a,
    const std::vector<std::vector<std::shared_ptr<
        const dolfinx::fem::DirichletBC<std::complex<double>>>>>& bcs1,
    const std::vector<std::span<const std::complex<double>>>& x0,
    std::complex<double> scale,

    const std::shared_ptr<
        const dolfinx_mpc::MultiPointConstraint<std::complex<double>, double>>&
        mpc)
{
  if (!x0.empty() and x0.size() != a.size())
  {
    throw std::runtime_error(
        "Mismatch in size between x0 and bilinear form in assembler.");
  }

  if (a.size() != bcs1.size())
  {
    throw std::runtime_error(
        "Mismatch in size between a and bcs in assembler.");
  }
  for (std::size_t j = 0; j < a.size(); ++j)
  {
    if (x0.empty())
    {
      impl::apply_lifting<std::complex<double>>(
          b, a[j], bcs1[j], std::span<const std::complex<double>>(), scale,
          mpc);
    }
    else
    {
      impl::apply_lifting<std::complex<double>>(b, a[j], bcs1[j], x0[j], scale,
                                                mpc);
    }
  }
}

/// Modify b such that:
///
///   b <- b - scale * K^T (A_j (g_j 0 x0_j))
///
/// where j is a block (nest) row index and K^T is the reduction matrix stemming
/// from the multi point constraint. For non - blocked problems j = 0.
/// The boundary conditions bcs1 are on the trial spaces V_j.
/// The forms in [a] must have the same test space as L (from
/// which b was built), but the trial space may differ. If x0 is not
/// supplied, then it is treated as 0.
/// @param[in,out] b The vector to be modified
/// @param[in] a The bilinear formss, where a[j] is the form that
/// generates A[j]
/// @param[in] bcs List of boundary conditions for each block, i.e. bcs1[2]
/// are the boundary conditions applied to the columns of a[2] / x0[2]
/// block.
/// @param[in] x0 The vectors used in the lifitng.
/// @param[in] scale Scaling to apply
/// @param[in] mpc The multi point constraints
void apply_lifting(
    std::span<float> b,
    const std::vector<std::shared_ptr<const dolfinx::fem::Form<float>>> a,
    const std::vector<
        std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<float>>>>&
        bcs1,
    const std::vector<std::span<const float>>& x0, float scale,
    const std::shared_ptr<
        const dolfinx_mpc::MultiPointConstraint<float, float>>& mpc)
{
  if (!x0.empty() and x0.size() != a.size())
  {
    throw std::runtime_error(
        "Mismatch in size between x0 and bilinear form in assembler.");
  }

  if (a.size() != bcs1.size())
  {
    throw std::runtime_error(
        "Mismatch in size between a and bcs in assembler.");
  }
  for (std::size_t j = 0; j < a.size(); ++j)
  {
    if (x0.empty())
    {
      impl::apply_lifting<float>(b, a[j], bcs1[j], std::span<const float>(),
                                 scale, mpc);
    }
    else
    {
      impl::apply_lifting<float>(b, a[j], bcs1[j], x0[j], scale, mpc);
    }
  }
}
/// Modify b such that:
///
///   b <- b - scale * K^T (A_j (g_j 0 x0_j))
///
/// where j is a block (nest) row index and K^T is the reduction matrix stemming
/// from the multi point constraint. For non - blocked problems j = 0.
/// The boundary conditions bcs1 are on the trial spaces V_j.
/// The forms in [a] must have the same test space as L (from
/// which b was built), but the trial space may differ. If x0 is not
/// supplied, then it is treated as 0.
/// @param[in,out] b The vector to be modified
/// @param[in] a The bilinear formss, where a[j] is the form that
/// generates A[j]
/// @param[in] bcs List of boundary conditions for each block, i.e. bcs1[2]
/// are the boundary conditions applied to the columns of a[2] / x0[2]
/// block.
/// @param[in] x0 The vectors used in the lifitng.
/// @param[in] scale Scaling to apply
/// @param[in] mpc The multi point constraints
void apply_lifting(
    std::span<std::complex<float>> b,
    const std::vector<
        std::shared_ptr<const dolfinx::fem::Form<std::complex<float>>>>
        a,
    const std::vector<std::vector<
        std::shared_ptr<const dolfinx::fem::DirichletBC<std::complex<float>>>>>&
        bcs1,
    const std::vector<std::span<const std::complex<float>>>& x0,
    std::complex<float> scale,

    const std::shared_ptr<
        const dolfinx_mpc::MultiPointConstraint<std::complex<float>, float>>&
        mpc)
{
  if (!x0.empty() and x0.size() != a.size())
  {
    throw std::runtime_error(
        "Mismatch in size between x0 and bilinear form in assembler.");
  }

  if (a.size() != bcs1.size())
  {
    throw std::runtime_error(
        "Mismatch in size between a and bcs in assembler.");
  }
  for (std::size_t j = 0; j < a.size(); ++j)
  {
    if (x0.empty())
    {
      impl::apply_lifting<std::complex<float>>(
          b, a[j], bcs1[j], std::span<const std::complex<float>>(), scale, mpc);
    }
    else
    {
      impl::apply_lifting<std::complex<float>>(b, a[j], bcs1[j], x0[j], scale,
                                               mpc);
    }
  }
}

} // namespace dolfinx_mpc