1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
// Copyright (C) 2021 Jorgen S. Dokken
//
// This file is part of DOLFINX_MPC
//
// SPDX-License-Identifier: MIT
#pragma once
#include <dolfinx/fem/FunctionSpace.h>
#include <dolfinx/graph/AdjacencyList.h>
namespace dolfinx_mpc
{
/// Create a map from cell to a set of dofs
/// @param[in] The degrees of freedom (local to process)
/// @tparam The floating type of the mesh
/// @returns The map from cell index (local to process) to dofs (local to
/// process) in the cell
template <std::floating_point U>
std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>>
create_cell_to_dofs_map(const dolfinx::fem::FunctionSpace<U>& V,
std::span<const std::int32_t> dofs)
{
const auto& mesh = *(V.mesh());
const dolfinx::fem::DofMap& dofmap = *(V.dofmap());
const int tdim = mesh.topology()->dim();
const int num_cells = mesh.topology()->index_map(tdim)->size_local();
const std::int32_t local_size
= dofmap.index_map->size_local() + dofmap.index_map->num_ghosts();
const std::int32_t block_size = dofmap.index_map_bs();
// Create dof -> cells map where only slave dofs have entries
std::shared_ptr<const dolfinx::graph::AdjacencyList<std::int32_t>> cell_map;
{
std::vector<std::int32_t> num_slave_cells(local_size * block_size, 0);
std::vector<std::int32_t> in_num_cells(local_size * block_size, 0);
// Loop through all cells and count number of cells a dof occurs in
for (std::int32_t i = 0; i < num_cells; i++)
for (auto block : dofmap.cell_dofs(i))
for (std::int32_t j = 0; j < block_size; j++)
in_num_cells[block * block_size + j]++;
// Count only number of slave cells for dofs
for (auto dof : dofs)
num_slave_cells[dof] = in_num_cells[dof];
std::vector<std::int32_t> insert_position(local_size * block_size, 0);
std::vector<std::int32_t> cell_offsets(local_size * block_size + 1);
cell_offsets[0] = 0;
std::inclusive_scan(num_slave_cells.begin(), num_slave_cells.end(),
cell_offsets.begin() + 1);
std::vector<std::int32_t> cell_data(cell_offsets.back());
// Accumulate those cells whose contains a slave dof
for (std::int32_t i = 0; i < num_cells; i++)
{
for (auto block : dofmap.cell_dofs(i))
{
for (std::int32_t j = 0; j < block_size; j++)
{
if (const std::int32_t dof = block * block_size + j;
num_slave_cells[dof] > 0)
{
cell_data[cell_offsets[dof] + insert_position[dof]++] = i;
}
}
}
}
cell_map
= std::make_shared<const dolfinx::graph::AdjacencyList<std::int32_t>>(
cell_data, cell_offsets);
}
// Create inverse map (cells -> slave dofs)
std::vector<std::int32_t> num_slaves(num_cells, 0);
for (std::int32_t i = 0; i < cell_map->num_nodes(); i++)
for (auto cell : cell_map->links(i))
num_slaves[cell]++;
std::vector<std::int32_t> insert_position(num_cells, 0);
std::vector<std::int32_t> dof_offsets(num_cells + 1);
dof_offsets[0] = 0;
std::inclusive_scan(num_slaves.begin(), num_slaves.end(),
dof_offsets.begin() + 1);
std::vector<std::int32_t> dof_data(dof_offsets.back());
for (std::int32_t i = 0; i < cell_map->num_nodes(); i++)
for (auto cell : cell_map->links(i))
dof_data[dof_offsets[cell] + insert_position[cell]++] = i;
return std::make_shared<const dolfinx::graph::AdjacencyList<std::int32_t>>(
dof_data, dof_offsets);
}
/// Given a list of global degrees of freedom, map them to their local index
/// @param[in] V The original function space
/// @param[in] global_dofs The list of dofs (global index)
/// @tparam The floating type of the mesh
/// @returns List of local dofs
template <std::floating_point U>
std::vector<std::int32_t>
map_dofs_global_to_local(const dolfinx::fem::FunctionSpace<U>& V,
const std::vector<std::int64_t>& global_dofs)
{
const std::size_t num_dofs = global_dofs.size();
const std::int32_t& block_size = V.dofmap()->index_map_bs();
const std::shared_ptr<const dolfinx::common::IndexMap> imap
= V.dofmap()->index_map;
std::vector<std::int64_t> global_blocks;
global_blocks.reserve(num_dofs);
std::vector<std::int32_t> remainders;
remainders.reserve(num_dofs);
std::ranges::for_each(
global_dofs,
[block_size, &global_blocks, &remainders](const auto slave)
{
global_blocks.push_back(slave / block_size);
remainders.push_back(slave % block_size);
});
// Compute the new local index of the master blocks
std::vector<std::int32_t> local_blocks(num_dofs);
imap->global_to_local(global_blocks, local_blocks);
// Go from blocks to actual local dof
for (std::size_t i = 0; i < local_blocks.size(); i++)
local_blocks[i] = local_blocks[i] * block_size + remainders[i];
return local_blocks;
}
/// Create an function space with an extended index map, where all input dofs
/// (global index) is added to the local index map as ghosts.
/// @param[in] V The original function space
/// @param[in] global_dofs The list of master dofs (global index)
/// @param[in] owners The owners of the master degrees of freedom
/// @tparam The floating type of the mesh
template <std::floating_point U>
dolfinx::fem::FunctionSpace<U>
create_extended_functionspace(const dolfinx::fem::FunctionSpace<U>& V,
const std::vector<std::int64_t>& global_dofs,
const std::vector<std::int32_t>& owners)
{
dolfinx::common::Timer timer(
"~MPC: Create new index map with additional ghosts");
MPI_Comm comm = V.mesh()->comm();
const dolfinx::fem::DofMap& old_dofmap = *(V.dofmap());
std::shared_ptr<const dolfinx::common::IndexMap> old_index_map
= old_dofmap.index_map;
const std::int32_t& block_size = V.dofmap()->index_map_bs();
// Compute local master block index.
const std::size_t num_dofs = global_dofs.size();
std::vector<std::int64_t> global_blocks(num_dofs);
std::vector<std::int32_t> local_blocks(num_dofs);
std::ranges::transform(global_dofs, global_blocks.begin(),
[block_size](const auto dof)
{ return dof / block_size; });
int mpi_size = -1;
MPI_Comm_size(comm, &mpi_size);
std::shared_ptr<const dolfinx::common::IndexMap> new_index_map;
if (mpi_size == 1)
{
new_index_map = old_index_map;
}
else
{
// Map global master blocks to local blocks
V.dofmap()->index_map->global_to_local(global_blocks, local_blocks);
// Check which local masters that are not on the process already
std::vector<std::int64_t> additional_ghosts;
additional_ghosts.reserve(num_dofs);
std::vector<std::int32_t> additional_owners;
additional_owners.reserve(num_dofs);
for (std::size_t i = 0; i < num_dofs; i++)
{
// Check if master block already has a local index and
// if has has already been ghosted, which is the case
// when we have multiple masters from the same block
if ((local_blocks[i] == -1)
and (std::ranges::find(additional_ghosts, global_blocks[i])
== additional_ghosts.end()))
{
additional_ghosts.push_back(global_blocks[i]);
additional_owners.push_back(owners[i]);
}
}
// Append new ghosts (and corresponding rank) at the end of the old set of
// ghosts originating from the old index map
std::span<const int> ghost_owners = old_index_map->owners();
std::span<const std::int64_t> ghosts = old_index_map->ghosts();
const std::int32_t num_ghosts = ghosts.size();
assert(ghost_owners.size() == ghosts.size());
std::vector<std::int64_t> all_ghosts(num_ghosts + additional_ghosts.size());
std::ranges::copy(ghosts, all_ghosts.begin());
std::ranges::copy(additional_ghosts, all_ghosts.begin() + num_ghosts);
std::vector<int> all_owners(all_ghosts.size());
std::ranges::copy(ghost_owners, all_owners.begin());
std::ranges::copy(additional_owners, all_owners.begin() + num_ghosts);
// Create new indexmap with ghosts for master blocks added
new_index_map = std::make_shared<dolfinx::common::IndexMap>(
comm, old_index_map->size_local(), all_ghosts, all_owners);
}
// Extract information from the old dofmap to create a new one
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
const std::int32_t,
MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
dofmap_adj = old_dofmap.map();
// Copy dofmap
std::vector<std::int32_t> flattened_dofmap;
flattened_dofmap.reserve(dofmap_adj.extent(0) * dofmap_adj.extent(1));
for (std::size_t i = 0; i < dofmap_adj.extent(0); ++i)
for (std::size_t j = 0; j < dofmap_adj.extent(1); ++j)
flattened_dofmap.push_back(dofmap_adj(i, j));
auto element = V.element();
// Create the new dofmap based on the extended index map
auto new_dofmap = std::make_shared<const dolfinx::fem::DofMap>(
old_dofmap.element_dof_layout(), new_index_map, old_dofmap.bs(),
std::move(flattened_dofmap), old_dofmap.bs());
return dolfinx::fem::FunctionSpace(
V.mesh(), element, new_dofmap,
dolfinx::fem::compute_value_shape(element, V.mesh()->topology()->dim(),
V.mesh()->geometry().dim()));
}
} // namespace dolfinx_mpc
|