1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
# Copyright (C) 2020-2021 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
#
# Multi point constraint problem for linear elasticity with slip conditions
# between two cubes.
from __future__ import annotations
import warnings
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path
from mpi4py import MPI
from petsc4py import PETSc
import basix.ufl
import numpy as np
from basix.ufl import element
from dolfinx import default_real_type, default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings, timing
from dolfinx.cpp.mesh import entities_to_geometry
from dolfinx.fem import (
Constant,
Function,
dirichletbc,
form,
functionspace,
locate_dofs_topological,
set_bc,
)
from dolfinx.io import XDMFFile
from dolfinx.mesh import (
CellType,
compute_midpoints,
create_mesh,
create_unit_cube,
locate_entities_boundary,
meshtags,
refine,
)
from ufl import Identity, Mesh, TestFunction, TrialFunction, dx, grad, inner, sym, tr
from dolfinx_mpc import MultiPointConstraint, apply_lifting, assemble_matrix, assemble_vector
from dolfinx_mpc.utils import (
create_normal_approximation,
log_info,
rigid_motions_nullspace,
rotation_matrix,
)
comm = MPI.COMM_WORLD
if default_real_type == np.float32:
warnings.warn(
"Demo not supported in single precision as reading from XDMF only support" + "double precision meshes"
)
exit(0)
def mesh_3D_dolfin(theta=0, ct=CellType.tetrahedron, ext="tetrahedron", num_refinements=0, N0=5):
timer = Timer("Create mesh")
def find_plane_function(p0, p1, p2):
"""
Find plane function given three points:
http://www.nabla.hr/CG-LinesPlanesIn3DA3.htm
"""
v1 = np.array(p1) - np.array(p0)
v2 = np.array(p2) - np.array(p0)
n = np.cross(v1, v2)
D = -(n[0] * p0[0] + n[1] * p0[1] + n[2] * p0[2])
return lambda x: np.isclose(0, np.dot(n, x) + D)
def over_plane(p0, p1, p2):
"""
Returns function that checks if a point is over a plane defined
by the points p0, p1 and p2.
"""
v1 = np.array(p1) - np.array(p0)
v2 = np.array(p2) - np.array(p0)
n = np.cross(v1, v2)
D = -(n[0] * p0[0] + n[1] * p0[1] + n[2] * p0[2])
return lambda x: n[0] * x[0] + n[1] * x[1] + D > -n[2] * x[2]
tmp_mesh_name = Path("tmp_mesh.xdmf").absolute()
tmp_mesh_name.parent.mkdir(exist_ok=True)
r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)
if MPI.COMM_WORLD.rank == 0:
# Create two coarse meshes and merge them
mesh0 = create_unit_cube(MPI.COMM_SELF, N0, N0, N0, ct)
mesh0.geometry.x[:, 2] += 1
mesh1 = create_unit_cube(MPI.COMM_SELF, 2 * N0, 2 * N0, 2 * N0, ct)
tdim0 = mesh0.topology.dim
num_cells0 = mesh0.topology.index_map(tdim0).size_local
mesh0.topology.create_connectivity(tdim0, tdim0)
cells0 = entities_to_geometry(mesh0._cpp_object, tdim0, np.arange(num_cells0, dtype=np.int32), False)
tdim1 = mesh1.topology.dim
num_cells1 = mesh1.topology.index_map(tdim1).size_local
mesh1.topology.create_connectivity(tdim1, tdim1)
cells1 = entities_to_geometry(mesh1._cpp_object, tdim1, np.arange(num_cells1, dtype=np.int32), False)
cells1 += mesh0.geometry.x.shape[0]
# Concatenate points and cells
points = np.vstack([mesh0.geometry.x, mesh1.geometry.x])
cells = np.vstack([cells0, cells1])
domain = Mesh(element("Lagrange", ct.name, 1, shape=(points.shape[1],)))
# Rotate mesh
points = np.dot(r_matrix, points.T).T.astype(default_real_type)
mesh = create_mesh(MPI.COMM_SELF, cells, points, domain)
with XDMFFile(MPI.COMM_SELF, tmp_mesh_name, "w") as xdmf:
xdmf.write_mesh(mesh)
MPI.COMM_WORLD.barrier()
with XDMFFile(MPI.COMM_WORLD, tmp_mesh_name, "r") as xdmf:
mesh = xdmf.read_mesh()
# Refine coarse mesh
for i in range(num_refinements):
mesh.topology.create_entities(mesh.topology.dim - 2)
mesh = refine(mesh, redistribute=True)
tdim = mesh.topology.dim
fdim = tdim - 1
# Find information about facets to be used in meshtags
bottom_points = np.dot(r_matrix, np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0]]).T)
bottom = find_plane_function(bottom_points[:, 0], bottom_points[:, 1], bottom_points[:, 2])
bottom_facets = locate_entities_boundary(mesh, fdim, bottom)
top_points = np.dot(r_matrix, np.array([[0, 0, 2], [1, 0, 2], [0, 1, 2], [1, 1, 2]]).T)
top = find_plane_function(top_points[:, 0], top_points[:, 1], top_points[:, 2])
top_facets = locate_entities_boundary(mesh, fdim, top)
# Determine interface facets
if_points = np.dot(r_matrix, np.array([[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]).T)
interface = find_plane_function(if_points[:, 0], if_points[:, 1], if_points[:, 2])
i_facets = locate_entities_boundary(mesh, fdim, interface)
mesh.topology.create_connectivity(fdim, tdim)
top_interface = []
bottom_interface = []
facet_to_cell = mesh.topology.connectivity(fdim, tdim)
num_cells = mesh.topology.index_map(tdim).size_local
# Find top and bottom interface facets
cells = np.arange(num_cells, dtype=np.int32)
mesh.topology.create_connectivity(tdim, tdim)
cell_midpoints = compute_midpoints(mesh, tdim, cells)
top_cube = over_plane(if_points[:, 0], if_points[:, 1], if_points[:, 2])
for facet in i_facets:
i_cells = facet_to_cell.links(facet)
assert len(i_cells == 1)
i_cell = i_cells[0]
if top_cube(cell_midpoints[i_cell]):
top_interface.append(facet)
else:
bottom_interface.append(facet)
# Create cell tags
top_cube_marker = 2
indices = []
values = []
for cell_index in range(num_cells):
if top_cube(cell_midpoints[cell_index]):
indices.append(cell_index)
values.append(top_cube_marker)
ct = meshtags(mesh, tdim, np.array(indices, dtype=np.intc), np.array(values, dtype=np.intc))
# Create meshtags for facet data
markers = {
3: top_facets,
4: bottom_interface,
9: top_interface,
5: bottom_facets,
} # , 6: left_facets, 7: right_facets}
indices = np.array([], dtype=np.intc)
values = np.array([], dtype=np.intc)
for key in markers.keys():
indices = np.append(indices, markers[key])
values = np.append(values, np.full(len(markers[key]), key, dtype=np.intc))
sorted_indices = np.argsort(indices)
mt = meshtags(mesh, fdim, indices[sorted_indices], values[sorted_indices])
mt.name = "facet_tags"
mesh_dir = Path("meshes").absolute()
mesh_dir.mkdir(exist_ok=True)
fname = mesh_dir / f"mesh_{ext}_{theta:.2f}.xdmf"
with XDMFFile(mesh.comm, fname, "w") as o_f:
o_f.write_mesh(mesh)
o_f.write_meshtags(ct, x=mesh.geometry)
o_f.write_meshtags(mt, x=mesh.geometry)
timer.stop()
def demo_stacked_cubes(theta, ct, noslip, num_refinements, N0, timings=False):
celltype = "hexahedron" if ct == CellType.hexahedron else "tetrahedron"
type_ext = "no_slip" if noslip else "slip"
log_info(f"Run theta: {theta:.2f}, Cell: {celltype:s}, Noslip: {noslip:b}")
# Read in mesh
mesh_3D_dolfin(theta=theta, ct=ct, ext=celltype, num_refinements=num_refinements, N0=N0)
comm.barrier()
mesh_dir = Path("meshes").absolute()
with XDMFFile(comm, mesh_dir / f"mesh_{celltype}_{theta:.2f}.xdmf", "r") as xdmf:
mesh = xdmf.read_mesh(name="mesh")
tdim = mesh.topology.dim
fdim = tdim - 1
mesh.topology.create_connectivity(tdim, tdim)
mesh.topology.create_connectivity(fdim, tdim)
mt = xdmf.read_meshtags(mesh, "facet_tags")
mesh.name = f"mesh_{celltype}_{theta:.2f}{type_ext:s}"
# Create functionspaces
el = basix.ufl.element(
"Lagrange", mesh.topology.cell_name(), 1, shape=(mesh.geometry.dim,), dtype=default_real_type
)
V = functionspace(mesh, el)
# Define boundary conditions
# Bottom boundary is fixed in all directions
u_bc = Function(V)
with u_bc.x.petsc_vec.localForm() as u_local:
u_local.set(0.0)
u_bc.x.petsc_vec.destroy()
bottom_dofs = locate_dofs_topological(V, fdim, mt.find(5))
bc_bottom = dirichletbc(u_bc, bottom_dofs)
g_vec = [0, 0, -4.25e-1]
if not noslip:
# Helper for orienting traction
r_matrix = rotation_matrix([1 / np.sqrt(2), 1 / np.sqrt(2), 0], -theta)
# Top boundary has a given deformation normal to the interface
g_vec = np.dot(r_matrix, [0, 0, -4.25e-1])
def top_v(x):
values = np.empty((3, x.shape[1]))
values[0] = g_vec[0]
values[1] = g_vec[1]
values[2] = g_vec[2]
return values
u_top = Function(V)
u_top.interpolate(top_v)
u_top.x.scatter_forward()
top_dofs = locate_dofs_topological(V, fdim, mt.find(3))
bc_top = dirichletbc(u_top, top_dofs)
bcs = [bc_bottom, bc_top]
# Elasticity parameters
E = default_scalar_type(1.0e3)
nu = 0
mu = Constant(mesh, E / (2.0 * (1.0 + nu)))
lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))
# Stress computation
def sigma(v):
return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(sigma(u), grad(v)) * dx
rhs = inner(Constant(mesh, default_scalar_type((0, 0, 0))), v) * dx
log_info("Create constraints")
mpc = MultiPointConstraint(V)
num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
if noslip:
with Timer(f"{num_dofs}: Contact-constraint"):
mpc.create_contact_inelastic_condition(mt, 4, 9)
else:
with Timer(f"{num_dofs}: FacetNormal"):
nh = create_normal_approximation(V, mt, 4)
with Timer(f"{num_dofs}: Contact-constraint"):
mpc.create_contact_slip_condition(mt, 4, 9, nh)
with Timer(f"{num_dofs}: MPC-init"):
mpc.finalize()
null_space = rigid_motions_nullspace(mpc.function_space)
log_info(f"Num dofs: {num_dofs}")
log_info("Assemble matrix")
bilinear_form = form(a)
linear_form = form(rhs)
with Timer(f"{num_dofs}: Assemble-matrix (C++)"):
A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
with Timer(f"{num_dofs}: Assemble-vector (C++)"):
b = assemble_vector(linear_form, mpc)
apply_lifting(b, [bilinear_form], [bcs], mpc)
b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # type: ignore
set_bc(b, bcs)
list_timings(MPI.COMM_WORLD, [TimingType.wall])
# Solve Linear problem
opts = PETSc.Options() # type: ignore
# opts["ksp_rtol"] = 1.0e-8
opts["pc_type"] = "gamg"
# opts["pc_gamg_type"] = "agg"
# opts["pc_gamg_coarse_eq_limit"] = 1000
# opts["pc_gamg_sym_graph"] = True
# opts["mg_levels_ksp_type"] = "chebyshev"
# opts["mg_levels_pc_type"] = "jacobi"
# opts["mg_levels_esteig_ksp_type"] = "cg"
# opts["matptap_via"] = "scalable"
# opts["pc_gamg_square_graph"] = 2
# opts["pc_gamg_threshold"] = 1e-2
# opts["help"] = None # List all available options
if timings:
opts["ksp_view"] = None # List progress of solver
# Create functionspace and build near nullspace
A.setNearNullSpace(null_space)
solver = PETSc.KSP().create(comm) # type: ignore
solver.setOperators(A)
solver.setFromOptions()
uh = Function(mpc.function_space)
uh.x.array[:] = 0
log_info("Solve")
with Timer(f"{num_dofs}: Solve"):
solver.solve(b, uh.x.petsc_vec)
uh.x.scatter_forward()
log_info("Backsub")
with Timer(f"{num_dofs}: Backsubstitution"):
mpc.backsubstitution(uh)
it = solver.getIterationNumber()
# Write solution to file
results = Path("results").absolute()
results.mkdir(exist_ok=True)
with XDMFFile(comm, results / f"bench_contact_{num_dofs}.xdmf", "w") as outfile:
outfile.write_mesh(mesh)
outfile.write_function(uh, 0.0, f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")
# Write performance data to file
if timings:
log_info("Timings")
num_slaves = MPI.COMM_WORLD.allreduce(mpc.num_local_slaves, op=MPI.SUM)
results_file = None
num_procs = comm.size
if comm.rank == 0:
results_file = open(results / f"results_bench_{num_dofs}.txt", "w")
print(f"#Procs: {num_procs}", file=results_file)
print(f"#Dofs: {num_dofs}", file=results_file)
print(f"#Slaves: {num_slaves}", file=results_file)
print(f"#Iterations: {it}", file=results_file)
operations = [
"Solve",
"Assemble-matrix (C++)",
"MPC-init",
"Contact-constraint",
"FacetNormal",
"Assemble-vector (C++)",
"Backsubstitution",
]
if comm.rank == 0:
print("Operation #Calls Avg Min Max", file=results_file)
for op in operations:
op_timing = timing(f"{num_dofs}: {op}")
num_calls = op_timing[0]
wall_time = op_timing[1]
avg_time = comm.allreduce(wall_time, op=MPI.SUM) / comm.size
min_time = comm.allreduce(wall_time, op=MPI.MIN)
max_time = comm.allreduce(wall_time, op=MPI.MAX)
if comm.rank == 0:
print(op, num_calls, avg_time, min_time, max_time, file=results_file)
list_timings(MPI.COMM_WORLD, [TimingType.wall])
b.destroy()
solver.destroy()
if __name__ == "__main__":
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--theta",
default=np.pi / 3,
type=np.float64,
dest="theta",
help="Rotation angle around axis [1, 1, 0]",
)
parser.add_argument("--ref", default=0, type=np.int32, dest="ref", help="Numer of mesh refinements")
parser.add_argument("--N0", default=3, type=np.int32, dest="N0", help="Initial mesh resolution")
hex = parser.add_mutually_exclusive_group(required=False)
hex.add_argument("--hex", dest="hex", action="store_true", help="Use hexahedron mesh", default=False)
slip = parser.add_mutually_exclusive_group(required=False)
slip.add_argument(
"--no-slip",
dest="noslip",
action="store_true",
help="Use no-slip constraint",
default=False,
)
args = parser.parse_args()
ct = CellType.hexahedron if args.hex else CellType.tetrahedron
# Create cache
demo_stacked_cubes(theta=args.theta, ct=ct, num_refinements=0, N0=3, noslip=args.noslip, timings=False)
# Run benchmark
demo_stacked_cubes(
theta=args.theta,
ct=ct,
num_refinements=args.ref,
N0=args.N0,
noslip=args.noslip,
timings=True,
)
|