1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
from __future__ import annotations
import resource
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path
from typing import Optional
from mpi4py import MPI
from petsc4py import PETSc
import basix.ufl
import h5py
import numpy as np
from dolfinx import default_real_type, default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.fem import (
Constant,
Function,
dirichletbc,
form,
functionspace,
locate_dofs_topological,
set_bc,
)
from dolfinx.io import XDMFFile
from dolfinx.mesh import create_unit_cube, locate_entities_boundary, meshtags, refine
from ufl import Identity, TestFunction, TrialFunction, ds, dx, grad, inner, sym, tr
from dolfinx_mpc import MultiPointConstraint, apply_lifting, assemble_matrix, assemble_vector
from dolfinx_mpc.utils import log_info, rigid_motions_nullspace
def bench_elasticity_one(
r_lvl: int = 0,
out_hdf5: Optional[h5py.File] = None,
xdmf: bool = False,
boomeramg: bool = False,
kspview: bool = False,
):
N = 3
mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N)
for i in range(r_lvl):
mesh.topology.create_entities(mesh.topology.dim - 2)
mesh = refine(mesh, redistribute=True)
fdim = mesh.topology.dim - 1
el = basix.ufl.element(
"Lagrange", mesh.topology.cell_name(), 1, shape=(mesh.geometry.dim,), dtype=default_real_type
)
V = functionspace(mesh, el)
# Generate Dirichlet BC on lower boundary (Fixed)
u_bc = Function(V)
with u_bc.x.petsc_vec.localForm() as u_local:
u_local.set(0.0)
u_bc.x.petsc_vec.destroy()
def boundaries(x):
return np.isclose(x[0], np.finfo(float).eps)
facets = locate_entities_boundary(mesh, fdim, boundaries)
topological_dofs = locate_dofs_topological(V, fdim, facets)
bc = dirichletbc(u_bc, topological_dofs)
bcs = [bc]
# Create traction meshtag
def traction_boundary(x):
return np.isclose(x[0], 1)
t_facets = locate_entities_boundary(mesh, fdim, traction_boundary)
facet_values = np.ones(len(t_facets), dtype=np.int32)
arg_sort = np.argsort(t_facets)
mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values[arg_sort])
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
# Elasticity parameters
E = 1.0e4
nu = 0.1
mu = Constant(mesh, default_scalar_type(E / (2.0 * (1.0 + nu))))
lmbda = Constant(mesh, default_scalar_type(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))))
g = Constant(mesh, (0, 0, -1e2))
# Stress computation
def sigma(v):
return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(sigma(u), grad(v)) * dx
rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1)
# Create MPC
with Timer("~Elasticity: Init constraint"):
def l2b(li):
return np.array(li, dtype=mesh.geometry.x.dtype).tobytes()
s_m_c = {l2b([1, 0, 0]): {l2b([1, 0, 1]): 0.5}}
mpc = MultiPointConstraint(V)
mpc.create_general_constraint(s_m_c, 2, 2)
mpc.finalize()
# Setup MPC system
bilinear_form = form(a)
linear_form = form(rhs)
with Timer("~Elasticity: Assemble LHS and RHS"):
A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
b = assemble_vector(linear_form, mpc)
# Apply boundary conditions
apply_lifting(b, [bilinear_form], [bcs], mpc)
b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # type: ignore
set_bc(b, bcs)
# Create functionspace and function for mpc vector
# Solve Linear problem
solver = PETSc.KSP().create(mesh.comm) # type: ignore
opts = PETSc.Options() # type: ignore
if boomeramg:
opts["ksp_type"] = "cg"
opts["ksp_rtol"] = 1.0e-5
opts["pc_type"] = "hypre"
opts["pc_hypre_type"] = "boomeramg"
opts["pc_hypre_boomeramg_max_iter"] = 1
opts["pc_hypre_boomeramg_cycle_type"] = "v"
# opts["pc_hypre_boomeramg_print_statistics"] = 1
else:
opts["ksp_rtol"] = 1.0e-10
opts["pc_type"] = "gamg"
opts["pc_gamg_type"] = "agg"
opts["pc_gamg_coarse_eq_limit"] = 1000
opts["pc_gamg_sym_graph"] = True
opts["mg_levels_ksp_type"] = "chebyshev"
opts["mg_levels_pc_type"] = "jacobi"
opts["mg_levels_esteig_ksp_type"] = "cg"
opts["matptap_via"] = "scalable"
# opts["help"] = None # List all available options
# opts["ksp_view"] = None # List progress of solver
with Timer("~Elasticity: Solve problem") as timer:
null_space = rigid_motions_nullspace(mpc.function_space)
A.setNearNullSpace(null_space)
solver.setFromOptions()
solver.setOperators(A)
# Solve linear problem
uh = b.copy()
uh.set(0)
solver.solve(b, uh)
uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) # type: ignore
mpc.backsubstitution(uh)
solver_time = timer.elapsed()
it = solver.getIterationNumber()
if kspview:
solver.view()
# Print max usage of summary
mem = sum(MPI.COMM_WORLD.allgather(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
if MPI.COMM_WORLD.rank == 0:
print(f"Rlvl {r_lvl}, Iterations {it}")
print(f"Rlvl {r_lvl}, Max usage {mem} (kb), #dofs {num_dofs}")
if out_hdf5 is not None:
d_set = out_hdf5.get("its")
d_set[r_lvl] = it
d_set = out_hdf5.get("num_dofs")
d_set[r_lvl] = num_dofs
d_set = out_hdf5.get("solve_time")
d_set[r_lvl, MPI.COMM_WORLD.rank] = solver_time[0]
if xdmf:
# Write solution to file
u_h = Function(mpc.function_space)
u_h.x.petsc_vec.setArray(uh.array)
u_h.name = "u_mpc"
outdir = Path("results")
outdir.mkdir(exist_ok=True, parents=True)
fname = outdir / f"bench_elasticity_{r_lvl}.xdmf"
with XDMFFile(mesh.comm, fname, "w") as outfile:
outfile.write_mesh(mesh)
outfile.write_function(u_h)
if __name__ == "__main__":
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--nref", default=1, type=int, dest="n_ref", help="Number of spatial refinements")
parser.add_argument("--xdmf", action="store_true", dest="xdmf", help="XDMF-output of function (Default false)")
parser.add_argument("--timings", action="store_true", dest="timings", help="List timings (Default false)")
parser.add_argument("--kspview", action="store_true", dest="kspview", help="View PETSc progress")
parser.add_argument("-o", default="elasticity_one.hdf5", dest="hdf5", help="Name of HDF5 output file")
solver_parser = parser.add_mutually_exclusive_group(required=False)
solver_parser.add_argument(
"--boomeramg",
dest="boomeramg",
default=True,
action="store_true",
help="Use BoomerAMG preconditioner (Default)",
)
solver_parser.add_argument("--gamg", dest="boomeramg", action="store_false", help="Use PETSc GAMG preconditioner")
args = parser.parse_args()
N = args.n_ref + 1
# Setup hd5f output file
h5f = h5py.File(args.hdf5, "w", driver="mpio", comm=MPI.COMM_WORLD)
h5f.create_dataset("its", (N,), dtype=np.int32)
h5f.create_dataset("num_dofs", (N,), dtype=np.int32)
sd = h5f.create_dataset("solve_time", (N, MPI.COMM_WORLD.size), dtype=np.float64)
solver = "BoomerAMG" if args.boomeramg else "GAMG"
sd.attrs["solver"] = np.bytes_(solver)
# Loop over refinement levels
for i in range(N):
log_info(f"Run {i} in progress")
bench_elasticity_one(r_lvl=i, out_hdf5=h5f, xdmf=args.xdmf, boomeramg=args.boomeramg, kspview=args.kspview)
if args.timings and i == N - 1:
list_timings(MPI.COMM_WORLD, [TimingType.wall])
h5f.close()
|