File: bench_elasticity_edge.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (282 lines) | stat: -rw-r--r-- 9,874 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

import resource
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path

from mpi4py import MPI
from petsc4py import PETSc

import basix.ufl
import h5py
import numpy as np
from dolfinx import default_real_type, default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.fem import (
    Constant,
    Function,
    dirichletbc,
    form,
    functionspace,
    locate_dofs_topological,
)
from dolfinx.fem.petsc import set_bc
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType, create_unit_cube, locate_entities_boundary, meshtags
from ufl import (
    Identity,
    SpatialCoordinate,
    TestFunction,
    TrialFunction,
    as_vector,
    ds,
    dx,
    grad,
    inner,
    sym,
    tr,
)

from dolfinx_mpc import MultiPointConstraint, apply_lifting, assemble_matrix, assemble_vector
from dolfinx_mpc.utils import log_info, rigid_motions_nullspace


def bench_elasticity_edge(
    tetra: bool = True,
    r_lvl: int = 0,
    out_hdf5=None,
    xdmf: bool = False,
    boomeramg: bool = False,
    kspview: bool = False,
    degree: int = 1,
    info: bool = False,
):
    N = 3
    for i in range(r_lvl):
        N *= 2
    ct = CellType.tetrahedron if tetra else CellType.hexahedron
    mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, ct)

    el = basix.ufl.element(
        "Lagrange", mesh.topology.cell_name(), int(degree), shape=(mesh.geometry.dim,), dtype=default_real_type
    )
    V = functionspace(mesh, el)

    # Generate Dirichlet BC (Fixed)
    u_bc = Function(V)
    u_bc.x.array[:] = 0

    def boundaries(x):
        return np.isclose(x[0], 0, 500 * np.finfo(x.dtype).resolution)

    fdim = mesh.topology.dim - 1
    facets = locate_entities_boundary(mesh, fdim, boundaries)
    topological_dofs = locate_dofs_topological(V, fdim, facets)
    bc = dirichletbc(u_bc, topological_dofs)
    bcs = [bc]

    def PeriodicBoundary(x):
        return np.logical_and(np.isclose(x[0], 1), np.isclose(x[2], 0))

    def periodic_relation(x):
        out_x = np.zeros(x.shape)
        out_x[0] = x[0]
        out_x[1] = x[1]
        out_x[2] = x[2] + 1
        return out_x

    with Timer("~Elasticity: Initialize MPC"):
        edim = mesh.topology.dim - 2
        edges = locate_entities_boundary(mesh, edim, PeriodicBoundary)
        arg_sort = np.argsort(edges)
        periodic_mt = meshtags(mesh, edim, edges[arg_sort], np.full(len(edges), 2, dtype=np.int32))

        mpc = MultiPointConstraint(V)
        mpc.create_periodic_constraint_topological(
            V, periodic_mt, 2, periodic_relation, bcs, scale=default_scalar_type(0.5)
        )
        mpc.finalize()

    # Create traction meshtag

    def traction_boundary(x):
        return np.isclose(x[0], 1)

    t_facets = locate_entities_boundary(mesh, fdim, traction_boundary)
    facet_values = np.ones(len(t_facets), dtype=np.int32)
    arg_sort = np.argsort(t_facets)
    mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values)

    # Elasticity parameters
    E = 1.0e4
    nu = 0.1
    mu = Constant(mesh, default_scalar_type(E / (2.0 * (1.0 + nu))))
    lmbda = Constant(mesh, default_scalar_type(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))))
    g = Constant(mesh, default_scalar_type((0, 0, -1e2)))
    x = SpatialCoordinate(mesh)
    f = Constant(mesh, default_scalar_type(1e3)) * as_vector((0, -((x[2] - 0.5) ** 2), (x[1] - 0.5) ** 2))

    # Stress computation
    def epsilon(v):
        return sym(grad(v))

    def sigma(v):
        return 2.0 * mu * epsilon(v) + lmbda * tr(epsilon(v)) * Identity(len(v))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1) + inner(f, v) * dx

    # Setup MPC system
    if info:
        log_info(f"Run {r_lvl}: Assembling matrix and vector")
    bilinear_form = form(a)
    linear_form = form(rhs)
    with Timer("~Elasticity: Assemble LHS and RHS"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
        b = assemble_vector(linear_form, mpc)

    # Create nullspace for elasticity problem and assign to matrix
    null_space = rigid_motions_nullspace(mpc.function_space)
    A.setNearNullSpace(null_space)

    # Apply boundary conditions
    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)  # type: ignore
    set_bc(b, bcs)

    opts = PETSc.Options()  # type: ignore
    if boomeramg:
        opts["ksp_type"] = "cg"
        opts["ksp_rtol"] = 1.0e-5
        opts["pc_type"] = "hypre"
        opts["pc_hypre_type"] = "boomeramg"
        opts["pc_hypre_boomeramg_max_iter"] = 1
        opts["pc_hypre_boomeramg_cycle_type"] = "v"
        # opts["pc_hypre_boomeramg_print_statistics"] = 1
    else:
        opts["ksp_rtol"] = 1.0e-8
        opts["pc_type"] = "gamg"
        opts["pc_gamg_type"] = "agg"
        opts["pc_gamg_coarse_eq_limit"] = 1000
        opts["pc_gamg_sym_graph"] = True
        opts["mg_levels_ksp_type"] = "chebyshev"
        opts["mg_levels_pc_type"] = "jacobi"
        opts["mg_levels_esteig_ksp_type"] = "cg"
        opts["matptap_via"] = "scalable"
        opts["pc_gamg_square_graph"] = 2
        opts["pc_gamg_threshold"] = 0.02
    # opts["help"] = None # List all available options
    # opts["ksp_view"] = None # List progress of solver

    # Setup PETSc solver
    solver = PETSc.KSP().create(mesh.comm)  # type: ignore
    solver.setFromOptions()  # type: ignore

    if info:
        log_info(f"Run {r_lvl}: Solving")

    with Timer("~Elasticity: Solve problem") as timer:
        solver.setOperators(A)
        uh = Function(mpc.function_space)
        uh.x.array[:] = 0
        solver.solve(b, uh.x.petsc_vec)
        uh.x.scatter_forward()
        mpc.backsubstitution(uh)
        solver_time = timer.elapsed()
    if kspview:
        solver.view()

    mem = sum(MPI.COMM_WORLD.allgather(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
    it = solver.getIterationNumber()

    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    if out_hdf5 is not None:
        d_set = out_hdf5.get("its")
        d_set[r_lvl] = it
        d_set = out_hdf5.get("num_dofs")
        d_set[r_lvl] = num_dofs
        d_set = out_hdf5.get("num_slaves")
        d_set[r_lvl, MPI.COMM_WORLD.rank] = mpc.num_local_slaves
        d_set = out_hdf5.get("solve_time")
        d_set[r_lvl, MPI.COMM_WORLD.rank] = solver_time[0]
    if info:
        log_info(f"Lvl: {r_lvl}, Its: {it}, max Mem: {mem}, dim(V): {num_dofs}")

    if xdmf:
        # Write solution to file
        u_h = Function(mpc.function_space)
        u_h.x.petsc_vec.setArray(uh.array)
        u_h.name = "u_mpc"
        results = Path("results").absolute()
        results.mkdir(exist_ok=True)
        fname = results / f"bench_elasticity_edge_{r_lvl}.xdmf"
        with XDMFFile(mesh.comm, fname, "w") as outfile:
            outfile.write_mesh(mesh)
            outfile.write_function(u_h)


if __name__ == "__main__":
    parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("--nref", default=1, type=np.int8, dest="n_ref", help="Number of spatial refinements")
    parser.add_argument("--degree", default=1, type=np.int8, dest="degree", help="CG Function space degree")
    parser.add_argument("--xdmf", action="store_true", dest="xdmf", help="XDMF-output of function (Default false)")
    parser.add_argument("--timings", action="store_true", dest="timings", help="List timings (Default false)")
    parser.add_argument(
        "--info",
        action="store_true",
        dest="info",
        help="Set loglevel to info (Default false)",
        default=False,
    )
    parser.add_argument("--kspview", action="store_true", dest="kspview", help="View PETSc progress")
    ct_parser = parser.add_mutually_exclusive_group(required=False)
    ct_parser.add_argument("--tet", dest="tetra", action="store_true", help="Tetrahedron elements")
    ct_parser.add_argument("--hex", dest="tetra", action="store_false", help="Hexahedron elements")
    solver_parser = parser.add_mutually_exclusive_group(required=False)
    solver_parser.add_argument(
        "--boomeramg",
        dest="boomeramg",
        default=True,
        action="store_true",
        help="Use BoomerAMG preconditioner (Default)",
    )
    solver_parser.add_argument("--gamg", dest="boomeramg", action="store_false", help="Use PETSc GAMG preconditioner")
    args = parser.parse_args()
    N = args.n_ref + 1
    out_file = Path("output/ench_edge_output.hdf5").absolute()
    out_file.parent.mkdir(exist_ok=True)
    h5f = h5py.File(out_file, "w", driver="mpio", comm=MPI.COMM_WORLD)
    h5f.create_dataset("its", (N,), dtype=np.int32)
    h5f.create_dataset("num_dofs", (N,), dtype=np.int32)
    h5f.create_dataset("num_slaves", (N, MPI.COMM_WORLD.size), dtype=np.int32)
    sd = h5f.create_dataset("solve_time", (N, MPI.COMM_WORLD.size), dtype=np.float64)
    solver = "BoomerAMG" if args.boomeramg else "GAMG"
    ct = "Tet" if args.tetra else "Hex"
    sd.attrs["solver"] = np.bytes_(solver)
    sd.attrs["degree"] = np.bytes_(str(int(args.degree)))
    sd.attrs["ct"] = np.bytes_(ct)

    for i in range(N):
        log_info(f"Run {i} in progress")
        bench_elasticity_edge(
            tetra=args.tetra,
            r_lvl=i,
            out_hdf5=h5f,
            xdmf=args.xdmf,
            boomeramg=args.boomeramg,
            kspview=args.kspview,
            degree=args.degree,
            info=args.info,
        )

        if args.timings and i == N - 1:
            list_timings(MPI.COMM_WORLD, [TimingType.wall])
    h5f.close()