1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
# Copyright (C) 2020 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier: MIT
from __future__ import annotations
import resource
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path
from mpi4py import MPI
from petsc4py import PETSc
import basix.ufl
import h5py
import numpy as np
from dolfinx import default_real_type, default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.fem import (
Constant,
Function,
dirichletbc,
form,
functionspace,
locate_dofs_topological,
)
from dolfinx.fem.petsc import set_bc
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType, create_unit_cube, locate_entities_boundary, meshtags
from ufl import (
Identity,
SpatialCoordinate,
TestFunction,
TrialFunction,
as_vector,
ds,
dx,
grad,
inner,
sym,
tr,
)
from dolfinx_mpc import MultiPointConstraint, apply_lifting, assemble_matrix, assemble_vector
from dolfinx_mpc.utils import log_info, rigid_motions_nullspace
def bench_elasticity_edge(
tetra: bool = True,
r_lvl: int = 0,
out_hdf5=None,
xdmf: bool = False,
boomeramg: bool = False,
kspview: bool = False,
degree: int = 1,
info: bool = False,
):
N = 3
for i in range(r_lvl):
N *= 2
ct = CellType.tetrahedron if tetra else CellType.hexahedron
mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, ct)
el = basix.ufl.element(
"Lagrange", mesh.topology.cell_name(), int(degree), shape=(mesh.geometry.dim,), dtype=default_real_type
)
V = functionspace(mesh, el)
# Generate Dirichlet BC (Fixed)
u_bc = Function(V)
u_bc.x.array[:] = 0
def boundaries(x):
return np.isclose(x[0], 0, 500 * np.finfo(x.dtype).resolution)
fdim = mesh.topology.dim - 1
facets = locate_entities_boundary(mesh, fdim, boundaries)
topological_dofs = locate_dofs_topological(V, fdim, facets)
bc = dirichletbc(u_bc, topological_dofs)
bcs = [bc]
def PeriodicBoundary(x):
return np.logical_and(np.isclose(x[0], 1), np.isclose(x[2], 0))
def periodic_relation(x):
out_x = np.zeros(x.shape)
out_x[0] = x[0]
out_x[1] = x[1]
out_x[2] = x[2] + 1
return out_x
with Timer("~Elasticity: Initialize MPC"):
edim = mesh.topology.dim - 2
edges = locate_entities_boundary(mesh, edim, PeriodicBoundary)
arg_sort = np.argsort(edges)
periodic_mt = meshtags(mesh, edim, edges[arg_sort], np.full(len(edges), 2, dtype=np.int32))
mpc = MultiPointConstraint(V)
mpc.create_periodic_constraint_topological(
V, periodic_mt, 2, periodic_relation, bcs, scale=default_scalar_type(0.5)
)
mpc.finalize()
# Create traction meshtag
def traction_boundary(x):
return np.isclose(x[0], 1)
t_facets = locate_entities_boundary(mesh, fdim, traction_boundary)
facet_values = np.ones(len(t_facets), dtype=np.int32)
arg_sort = np.argsort(t_facets)
mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values)
# Elasticity parameters
E = 1.0e4
nu = 0.1
mu = Constant(mesh, default_scalar_type(E / (2.0 * (1.0 + nu))))
lmbda = Constant(mesh, default_scalar_type(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))))
g = Constant(mesh, default_scalar_type((0, 0, -1e2)))
x = SpatialCoordinate(mesh)
f = Constant(mesh, default_scalar_type(1e3)) * as_vector((0, -((x[2] - 0.5) ** 2), (x[1] - 0.5) ** 2))
# Stress computation
def epsilon(v):
return sym(grad(v))
def sigma(v):
return 2.0 * mu * epsilon(v) + lmbda * tr(epsilon(v)) * Identity(len(v))
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(sigma(u), grad(v)) * dx
rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1) + inner(f, v) * dx
# Setup MPC system
if info:
log_info(f"Run {r_lvl}: Assembling matrix and vector")
bilinear_form = form(a)
linear_form = form(rhs)
with Timer("~Elasticity: Assemble LHS and RHS"):
A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
b = assemble_vector(linear_form, mpc)
# Create nullspace for elasticity problem and assign to matrix
null_space = rigid_motions_nullspace(mpc.function_space)
A.setNearNullSpace(null_space)
# Apply boundary conditions
apply_lifting(b, [bilinear_form], [bcs], mpc)
b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # type: ignore
set_bc(b, bcs)
opts = PETSc.Options() # type: ignore
if boomeramg:
opts["ksp_type"] = "cg"
opts["ksp_rtol"] = 1.0e-5
opts["pc_type"] = "hypre"
opts["pc_hypre_type"] = "boomeramg"
opts["pc_hypre_boomeramg_max_iter"] = 1
opts["pc_hypre_boomeramg_cycle_type"] = "v"
# opts["pc_hypre_boomeramg_print_statistics"] = 1
else:
opts["ksp_rtol"] = 1.0e-8
opts["pc_type"] = "gamg"
opts["pc_gamg_type"] = "agg"
opts["pc_gamg_coarse_eq_limit"] = 1000
opts["pc_gamg_sym_graph"] = True
opts["mg_levels_ksp_type"] = "chebyshev"
opts["mg_levels_pc_type"] = "jacobi"
opts["mg_levels_esteig_ksp_type"] = "cg"
opts["matptap_via"] = "scalable"
opts["pc_gamg_square_graph"] = 2
opts["pc_gamg_threshold"] = 0.02
# opts["help"] = None # List all available options
# opts["ksp_view"] = None # List progress of solver
# Setup PETSc solver
solver = PETSc.KSP().create(mesh.comm) # type: ignore
solver.setFromOptions() # type: ignore
if info:
log_info(f"Run {r_lvl}: Solving")
with Timer("~Elasticity: Solve problem") as timer:
solver.setOperators(A)
uh = Function(mpc.function_space)
uh.x.array[:] = 0
solver.solve(b, uh.x.petsc_vec)
uh.x.scatter_forward()
mpc.backsubstitution(uh)
solver_time = timer.elapsed()
if kspview:
solver.view()
mem = sum(MPI.COMM_WORLD.allgather(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
it = solver.getIterationNumber()
num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
if out_hdf5 is not None:
d_set = out_hdf5.get("its")
d_set[r_lvl] = it
d_set = out_hdf5.get("num_dofs")
d_set[r_lvl] = num_dofs
d_set = out_hdf5.get("num_slaves")
d_set[r_lvl, MPI.COMM_WORLD.rank] = mpc.num_local_slaves
d_set = out_hdf5.get("solve_time")
d_set[r_lvl, MPI.COMM_WORLD.rank] = solver_time[0]
if info:
log_info(f"Lvl: {r_lvl}, Its: {it}, max Mem: {mem}, dim(V): {num_dofs}")
if xdmf:
# Write solution to file
u_h = Function(mpc.function_space)
u_h.x.petsc_vec.setArray(uh.array)
u_h.name = "u_mpc"
results = Path("results").absolute()
results.mkdir(exist_ok=True)
fname = results / f"bench_elasticity_edge_{r_lvl}.xdmf"
with XDMFFile(mesh.comm, fname, "w") as outfile:
outfile.write_mesh(mesh)
outfile.write_function(u_h)
if __name__ == "__main__":
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--nref", default=1, type=np.int8, dest="n_ref", help="Number of spatial refinements")
parser.add_argument("--degree", default=1, type=np.int8, dest="degree", help="CG Function space degree")
parser.add_argument("--xdmf", action="store_true", dest="xdmf", help="XDMF-output of function (Default false)")
parser.add_argument("--timings", action="store_true", dest="timings", help="List timings (Default false)")
parser.add_argument(
"--info",
action="store_true",
dest="info",
help="Set loglevel to info (Default false)",
default=False,
)
parser.add_argument("--kspview", action="store_true", dest="kspview", help="View PETSc progress")
ct_parser = parser.add_mutually_exclusive_group(required=False)
ct_parser.add_argument("--tet", dest="tetra", action="store_true", help="Tetrahedron elements")
ct_parser.add_argument("--hex", dest="tetra", action="store_false", help="Hexahedron elements")
solver_parser = parser.add_mutually_exclusive_group(required=False)
solver_parser.add_argument(
"--boomeramg",
dest="boomeramg",
default=True,
action="store_true",
help="Use BoomerAMG preconditioner (Default)",
)
solver_parser.add_argument("--gamg", dest="boomeramg", action="store_false", help="Use PETSc GAMG preconditioner")
args = parser.parse_args()
N = args.n_ref + 1
out_file = Path("output/ench_edge_output.hdf5").absolute()
out_file.parent.mkdir(exist_ok=True)
h5f = h5py.File(out_file, "w", driver="mpio", comm=MPI.COMM_WORLD)
h5f.create_dataset("its", (N,), dtype=np.int32)
h5f.create_dataset("num_dofs", (N,), dtype=np.int32)
h5f.create_dataset("num_slaves", (N, MPI.COMM_WORLD.size), dtype=np.int32)
sd = h5f.create_dataset("solve_time", (N, MPI.COMM_WORLD.size), dtype=np.float64)
solver = "BoomerAMG" if args.boomeramg else "GAMG"
ct = "Tet" if args.tetra else "Hex"
sd.attrs["solver"] = np.bytes_(solver)
sd.attrs["degree"] = np.bytes_(str(int(args.degree)))
sd.attrs["ct"] = np.bytes_(ct)
for i in range(N):
log_info(f"Run {i} in progress")
bench_elasticity_edge(
tetra=args.tetra,
r_lvl=i,
out_hdf5=h5f,
xdmf=args.xdmf,
boomeramg=args.boomeramg,
kspview=args.kspview,
degree=args.degree,
info=args.info,
)
if args.timings and i == N - 1:
list_timings(MPI.COMM_WORLD, [TimingType.wall])
h5f.close()
|