1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
from __future__ import annotations
import matplotlib.pyplot as plt
import numpy as np
# Res 0.1 31776, 0.05 234546, 0.025 1801086, 0.02 3488856, 0.0175 5147961,0.015 7960200
dofs = [31776, 234546, 1801086, 3488856, 5147961, 7960200]
def visualize_side_by_side(dofs):
fig, ax = plt.subplots()
plt.grid("on", zorder=1)
procs = []
first = True
slaves = []
totals = np.zeros(len(dofs))
for i, dof in enumerate(dofs):
infile = open("results_bench_{0:d}.txt".format(dof), "r")
# Read problem info
procs.append(int(infile.readline().split(": ")[-1].strip("\n")))
# Skip num dofs
infile.readline()
slaves.append(int(infile.readline().split(": ")[-1].strip("\n")))
solve_iterations = int(infile.readline().split(": ")[-1].strip("\n"))
# Skip info line
infile.readline()
# Read timings
operations = infile.readlines()
colors = [
"tab:blue",
"tab:brown",
"tab:orange",
"tab:green",
"tab:red",
"tab:purple",
"tab:cyan",
"tab:olive",
]
total_time = 0
for j, line in enumerate(operations):
data = line.strip("\n").split(" ")
if data[0] == "Backsubstitution":
continue
if first:
plt.bar(
i,
float(data[2]),
0.5,
bottom=total_time,
label=data[0],
color=colors[j],
zorder=2,
)
else:
plt.bar(i, float(data[2]), 0.5, bottom=total_time, color=colors[j], zorder=2)
if data[0] == "Solve":
ax.annotate(
"{0:d}".format(solve_iterations),
xy=(i, total_time + float(data[2]) / 2),
xytext=(0, 0),
textcoords="offset points",
ha="center",
va="bottom",
)
total_time += float(data[2])
first = False
totals[i] = total_time
ax.set_xticks(range(len(dofs)))
labels = dofs
ax.set_xticklabels(labels)
assert np.allclose(procs, procs[0])
# Shrink current axis by 20%
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(bbox_to_anchor=(0.95, 0.5))
plt.xlabel("Degrees of freedom")
plt.title(f"Average runtime of operations with {procs[0]} MPI ranks")
plt.ylabel("Runtime (s)")
plt.savefig("comparison_bars.png")
# Second figure
plt.figure()
plt.ylabel("Runtime (s)")
plt.xlabel("Degrees of freedom")
power_min = int(np.log10(min(dofs)))
power_max = int(np.log10(max(dofs)) + 1)
power_tmin = int(np.log10(min(totals)) - 1)
power_tmax = int(np.log10(max(totals)) + 1)
plt.axis((10**power_min, 10**power_max, 10**power_tmin, 10**power_tmax))
plt.plot(dofs, totals, "-ro", label="Simulations")
# 7
plt.plot([3.1 * 10**4, 3.1 * 10**7], [4.3 * 10**-1, 4.3 * 10**2], "--g", label="Order 1")
# 6 procs
# plt.plot([3.1 * 10**4, 3.1 * 10**7], [4.8 * 10**-1, 4.8 * 10**2], "--g", label="Order 1")
# 4 procs
# plt.plot([3.1 * 10**4, 3.1 * 10**7], [5.7 * 10**-1, 5.7 * 10**2], "--g", label="Order 1")
plt.title(f"Total runtime of core operations with {procs[0]} MPI ranks")
plt.legend()
plt.grid()
plt.xscale("log")
plt.yscale("log")
plt.savefig("comparison.png")
def visualize_single(dof):
infile = open("results_bench_{0:d}.txt".format(dof), "r")
# Read problem info
procs = infile.readline().split(": ")[-1].strip("\n")
# Skip num dofs
infile.readline()
slaves = int(infile.readline().split(": ")[-1].strip("\n"))
infile.readline()
# solve_iterations = int(infile.readline().split(": ")[-1].strip("\n"))
# Skip info line
infile.readline()
# Read timings
operations = infile.readlines()
colors = [
"tab:blue",
"tab:brown",
"tab:orange",
"tab:green",
"tab:red",
"tab:purple",
"tab:cyan",
"tab:olive",
]
fig, ax = plt.subplots()
plt.grid("on", zorder=1)
for j, line in enumerate(operations):
data = line.strip("\n").split(" ")
if data[0] == "Backsubstitution":
continue
plt.bar(j, float(data[2]), 0.5, label=data[0], color=colors[j], zorder=2)
ax.set_xticks([])
# ax.set_yscale("log")
plt.legend()
plt.ylabel("Runtime (s)")
# Shrink current axis by 20%
# box = ax.get_position()
# ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
# ax.legend(bbox_to_anchor=(0.95, 0.5))
plt.title(f"Average runtime of operations with {dof} ({slaves} slaves) on {procs} MPI ranks")
plt.savefig(f"comparison_{slaves}.png")
visualize_single(max(dofs))
visualize_side_by_side(dofs)
|