1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
# This demo program solves Poisson's equation
#
# - div grad u(x, y) = f(x, y)
#
# on the unit square with homogeneous Dirichlet boundary conditions
# at y = 0, 1.
#
# Original implementation in DOLFIN by Kristian B. Oelgaard and Anders Logg
# This implementation can be found at:
# https://bitbucket.org/fenics-project/dolfin/src/master/python/demo/documented/periodic/demo_periodic.py
#
# Copyright (C) Jørgen S. Dokken 2020.
#
# This file is part of DOLFINX_MPC.
#
# SPDX-License-Identifier: MIT
from __future__ import annotations
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path
from time import perf_counter
from typing import Optional
from mpi4py import MPI
from petsc4py import PETSc
import h5py
import numpy as np
from dolfinx import default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.fem import Function, dirichletbc, form, functionspace, locate_dofs_geometrical
from dolfinx.fem.petsc import apply_lifting, assemble_matrix, assemble_vector, set_bc
from dolfinx.io import XDMFFile
from dolfinx.log import LogLevel, log, set_log_level
from dolfinx.mesh import CellType, create_unit_cube, refine
from ufl import SpatialCoordinate, TestFunction, TrialFunction, dx, exp, grad, inner, pi, sin
def reference_periodic(
tetra: bool,
r_lvl: int = 0,
out_hdf5: Optional[h5py.File] = None,
xdmf: bool = False,
boomeramg: bool = False,
kspview: bool = False,
degree: int = 1,
):
# Create mesh and finite element
if tetra:
# Tet setup
N = 3
mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N)
for i in range(r_lvl):
mesh.topology.create_entities(mesh.topology.dim - 2)
mesh = refine(mesh, redistribute=True)
N *= 2
else:
# Hex setup
N = 3
for i in range(r_lvl):
N *= 2
mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron)
V = functionspace(mesh, ("CG", degree))
# Create Dirichlet boundary condition
def dirichletboundary(x):
return np.logical_or(
np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)),
np.logical_or(np.isclose(x[2], 0), np.isclose(x[2], 1)),
)
mesh.topology.create_connectivity(2, 1)
geometrical_dofs = locate_dofs_geometrical(V, dirichletboundary)
bc = dirichletbc(default_scalar_type(0), geometrical_dofs, V)
bcs = [bc]
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(u), grad(v)) * dx
x = SpatialCoordinate(mesh)
dx_ = x[0] - 0.9
dy_ = x[1] - 0.5
dz_ = x[2] - 0.1
f = x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp(-(dx_ * dx_ + dy_ * dy_ + dz_ * dz_) / 0.02)
rhs = inner(f, v) * dx
# Assemble rhs, RHS and apply lifting
bilinear_form = form(a)
linear_form = form(rhs)
A_org = assemble_matrix(bilinear_form, bcs)
A_org.assemble()
L_org = assemble_vector(linear_form)
apply_lifting(L_org, [bilinear_form], [bcs])
L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) # type: ignore
set_bc(L_org, bcs)
# Create PETSc nullspace
nullspace = PETSc.NullSpace().create(constant=True) # type: ignore
PETSc.Mat.setNearNullSpace(A_org, nullspace) # type: ignore
# Set PETSc options
opts = PETSc.Options() # type: ignore
if boomeramg:
opts["ksp_type"] = "cg"
opts["ksp_rtol"] = 1.0e-5
opts["pc_type"] = "hypre"
opts["pc_hypre_type"] = "boomeramg"
opts["pc_hypre_boomeramg_max_iter"] = 1
opts["pc_hypre_boomeramg_cycle_type"] = "v"
# opts["pc_hypre_boomeramg_print_statistics"] = 1
else:
opts["ksp_type"] = "cg"
opts["ksp_rtol"] = 1.0e-12
opts["pc_type"] = "gamg"
opts["pc_gamg_type"] = "agg"
opts["pc_gamg_sym_graph"] = True
# Use Chebyshev smoothing for multigrid
opts["mg_levels_ksp_type"] = "richardson"
opts["mg_levels_pc_type"] = "sor"
# opts["help"] = None # List all available options
# opts["ksp_view"] = None # List progress of solver
# Initialize PETSc solver, set options and operator
solver = PETSc.KSP().create(mesh.comm) # type: ignore
solver.setFromOptions()
solver.setOperators(A_org)
# Solve linear problem
u_ = Function(V)
start = perf_counter()
with Timer("Solve"):
solver.solve(L_org, u_.x.petsc_vec)
end = perf_counter()
u_.x.petsc_vec.ghostUpdate(
addv=PETSc.InsertMode.INSERT, # type: ignore
mode=PETSc.ScatterMode.FORWARD, # type: ignore
) # type: ignore
if kspview:
solver.view()
it = solver.getIterationNumber()
num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
if out_hdf5 is not None:
d_set = out_hdf5.get("its")
d_set[r_lvl] = it
d_set = out_hdf5.get("num_dofs")
d_set[r_lvl] = num_dofs
d_set = out_hdf5.get("solve_time")
d_set[r_lvl, MPI.COMM_WORLD.rank] = end - start
if MPI.COMM_WORLD.rank == 0:
print("Rlvl {0:d}, Iterations {1:d}".format(r_lvl, it))
# Output solution to XDMF
if xdmf:
ext = "tet" if tetra else "hex"
outdir = Path("results")
outdir.mkdir(exist_ok=True, parents=True)
fname = outdir / "reference_periodic_{0:d}_{1:s}.xdmf".format(r_lvl, ext)
u_.name = "u_" + ext + "_unconstrained"
with XDMFFile(mesh.comm, fname, "w") as out_periodic:
out_periodic.write_mesh(mesh)
out_periodic.write_function(u_, 0.0, "Xdmf/Domain/" + "Grid[@Name='{0:s}'][1]".format(mesh.name))
if __name__ == "__main__":
# Set Argparser defaults
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--nref", default=1, type=np.int8, dest="n_ref", help="Number of spatial refinements")
parser.add_argument("--degree", default=1, type=np.int8, dest="degree", help="CG Function space degree")
parser.add_argument("--xdmf", action="store_true", dest="xdmf", help="XDMF-output of function (Default false)")
parser.add_argument("--timings", action="store_true", dest="timings", help="List timings (Default false)")
parser.add_argument("--kspview", action="store_true", dest="kspview", help="View PETSc progress")
parser.add_argument("-o", default="periodic_ref_output.hdf5", dest="hdf5", help="Name of HDF5 output file")
ct_parser = parser.add_mutually_exclusive_group(required=False)
ct_parser.add_argument("--tet", dest="tetra", action="store_true", help="Tetrahedron elements", default=True)
ct_parser.add_argument("--hex", dest="tetra", action="store_false", help="Hexahedron elements")
solver_parser = parser.add_mutually_exclusive_group(required=False)
solver_parser.add_argument(
"--boomeramg",
dest="boomeramg",
default=True,
action="store_true",
help="Use BoomerAMG preconditioner (Default)",
)
solver_parser.add_argument("--gamg", dest="boomeramg", action="store_false", help="Use PETSc GAMG preconditioner")
args = parser.parse_args()
N = args.n_ref + 1
h5f = h5py.File("periodic_ref_output.hdf5", "w", driver="mpio", comm=MPI.COMM_WORLD)
h5f.create_dataset("its", (N,), dtype=np.int32)
h5f.create_dataset("num_dofs", (N,), dtype=np.int32)
sd = h5f.create_dataset("solve_time", (N, MPI.COMM_WORLD.size), dtype=np.float64)
solver = "BoomerAMG" if args.boomeramg else "GAMG"
ct = "Tet" if args.tetra else "Hex"
sd.attrs["solver"] = np.bytes_(solver)
sd.attrs["degree"] = np.bytes_(str(int(args.degree)))
sd.attrs["ct"] = np.bytes_(ct)
for i in range(N):
if MPI.COMM_WORLD.rank == 0:
set_log_level(LogLevel.INFO)
log(LogLevel.INFO, "Run {0:1d} in progress".format(i))
set_log_level(LogLevel.ERROR)
reference_periodic(
args.tetra,
r_lvl=i,
out_hdf5=h5f,
xdmf=args.xdmf,
boomeramg=args.boomeramg,
kspview=args.kspview,
degree=args.degree,
)
if args.timings and i == N - 1:
list_timings(MPI.COMM_WORLD, [TimingType.wall])
h5f.close()
|