File: ref_periodic.py

package info (click to toggle)
dolfinx-mpc 0.9.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,188 kB
  • sloc: python: 7,263; cpp: 5,462; makefile: 69; sh: 4
file content (223 lines) | stat: -rw-r--r-- 8,316 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# This demo program solves Poisson's equation
#
#     - div grad u(x, y) = f(x, y)
#
# on the unit square with homogeneous Dirichlet boundary conditions
# at y = 0, 1.
#
# Original implementation in DOLFIN by Kristian B. Oelgaard and Anders Logg
# This implementation can be found at:
# https://bitbucket.org/fenics-project/dolfin/src/master/python/demo/documented/periodic/demo_periodic.py
#
# Copyright (C) Jørgen S. Dokken 2020.
#
# This file is part of DOLFINX_MPC.
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from pathlib import Path
from time import perf_counter
from typing import Optional

from mpi4py import MPI
from petsc4py import PETSc

import h5py
import numpy as np
from dolfinx import default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.fem import Function, dirichletbc, form, functionspace, locate_dofs_geometrical
from dolfinx.fem.petsc import apply_lifting, assemble_matrix, assemble_vector, set_bc
from dolfinx.io import XDMFFile
from dolfinx.log import LogLevel, log, set_log_level
from dolfinx.mesh import CellType, create_unit_cube, refine
from ufl import SpatialCoordinate, TestFunction, TrialFunction, dx, exp, grad, inner, pi, sin


def reference_periodic(
    tetra: bool,
    r_lvl: int = 0,
    out_hdf5: Optional[h5py.File] = None,
    xdmf: bool = False,
    boomeramg: bool = False,
    kspview: bool = False,
    degree: int = 1,
):
    # Create mesh and finite element
    if tetra:
        # Tet setup
        N = 3
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N)
        for i in range(r_lvl):
            mesh.topology.create_entities(mesh.topology.dim - 2)
            mesh = refine(mesh, redistribute=True)
            N *= 2
    else:
        # Hex setup
        N = 3
        for i in range(r_lvl):
            N *= 2
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron)

    V = functionspace(mesh, ("CG", degree))

    # Create Dirichlet boundary condition

    def dirichletboundary(x):
        return np.logical_or(
            np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)),
            np.logical_or(np.isclose(x[2], 0), np.isclose(x[2], 1)),
        )

    mesh.topology.create_connectivity(2, 1)
    geometrical_dofs = locate_dofs_geometrical(V, dirichletboundary)
    bc = dirichletbc(default_scalar_type(0), geometrical_dofs, V)
    bcs = [bc]

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(grad(u), grad(v)) * dx
    x = SpatialCoordinate(mesh)
    dx_ = x[0] - 0.9
    dy_ = x[1] - 0.5
    dz_ = x[2] - 0.1
    f = x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp(-(dx_ * dx_ + dy_ * dy_ + dz_ * dz_) / 0.02)
    rhs = inner(f, v) * dx

    # Assemble rhs, RHS and apply lifting
    bilinear_form = form(a)
    linear_form = form(rhs)
    A_org = assemble_matrix(bilinear_form, bcs)
    A_org.assemble()
    L_org = assemble_vector(linear_form)
    apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)  # type: ignore
    set_bc(L_org, bcs)

    # Create PETSc nullspace
    nullspace = PETSc.NullSpace().create(constant=True)  # type: ignore
    PETSc.Mat.setNearNullSpace(A_org, nullspace)  # type: ignore

    # Set PETSc options
    opts = PETSc.Options()  # type: ignore
    if boomeramg:
        opts["ksp_type"] = "cg"
        opts["ksp_rtol"] = 1.0e-5
        opts["pc_type"] = "hypre"
        opts["pc_hypre_type"] = "boomeramg"
        opts["pc_hypre_boomeramg_max_iter"] = 1
        opts["pc_hypre_boomeramg_cycle_type"] = "v"
        # opts["pc_hypre_boomeramg_print_statistics"] = 1
    else:
        opts["ksp_type"] = "cg"
        opts["ksp_rtol"] = 1.0e-12
        opts["pc_type"] = "gamg"
        opts["pc_gamg_type"] = "agg"
        opts["pc_gamg_sym_graph"] = True

        # Use Chebyshev smoothing for multigrid
        opts["mg_levels_ksp_type"] = "richardson"
        opts["mg_levels_pc_type"] = "sor"
    # opts["help"] = None # List all available options
    # opts["ksp_view"] = None # List progress of solver

    # Initialize PETSc solver, set options and operator
    solver = PETSc.KSP().create(mesh.comm)  # type: ignore
    solver.setFromOptions()
    solver.setOperators(A_org)

    # Solve linear problem
    u_ = Function(V)
    start = perf_counter()
    with Timer("Solve"):
        solver.solve(L_org, u_.x.petsc_vec)
    end = perf_counter()
    u_.x.petsc_vec.ghostUpdate(
        addv=PETSc.InsertMode.INSERT,  # type: ignore
        mode=PETSc.ScatterMode.FORWARD,  # type: ignore
    )  # type: ignore
    if kspview:
        solver.view()

    it = solver.getIterationNumber()
    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    if out_hdf5 is not None:
        d_set = out_hdf5.get("its")
        d_set[r_lvl] = it
        d_set = out_hdf5.get("num_dofs")
        d_set[r_lvl] = num_dofs
        d_set = out_hdf5.get("solve_time")
        d_set[r_lvl, MPI.COMM_WORLD.rank] = end - start

    if MPI.COMM_WORLD.rank == 0:
        print("Rlvl {0:d}, Iterations {1:d}".format(r_lvl, it))

    # Output solution to XDMF
    if xdmf:
        ext = "tet" if tetra else "hex"
        outdir = Path("results")
        outdir.mkdir(exist_ok=True, parents=True)
        fname = outdir / "reference_periodic_{0:d}_{1:s}.xdmf".format(r_lvl, ext)
        u_.name = "u_" + ext + "_unconstrained"
        with XDMFFile(mesh.comm, fname, "w") as out_periodic:
            out_periodic.write_mesh(mesh)
            out_periodic.write_function(u_, 0.0, "Xdmf/Domain/" + "Grid[@Name='{0:s}'][1]".format(mesh.name))


if __name__ == "__main__":
    # Set Argparser defaults
    parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
    parser.add_argument("--nref", default=1, type=np.int8, dest="n_ref", help="Number of spatial refinements")
    parser.add_argument("--degree", default=1, type=np.int8, dest="degree", help="CG Function space degree")
    parser.add_argument("--xdmf", action="store_true", dest="xdmf", help="XDMF-output of function (Default false)")
    parser.add_argument("--timings", action="store_true", dest="timings", help="List timings (Default false)")
    parser.add_argument("--kspview", action="store_true", dest="kspview", help="View PETSc progress")
    parser.add_argument("-o", default="periodic_ref_output.hdf5", dest="hdf5", help="Name of HDF5 output file")
    ct_parser = parser.add_mutually_exclusive_group(required=False)
    ct_parser.add_argument("--tet", dest="tetra", action="store_true", help="Tetrahedron elements", default=True)
    ct_parser.add_argument("--hex", dest="tetra", action="store_false", help="Hexahedron elements")
    solver_parser = parser.add_mutually_exclusive_group(required=False)
    solver_parser.add_argument(
        "--boomeramg",
        dest="boomeramg",
        default=True,
        action="store_true",
        help="Use BoomerAMG preconditioner (Default)",
    )
    solver_parser.add_argument("--gamg", dest="boomeramg", action="store_false", help="Use PETSc GAMG preconditioner")

    args = parser.parse_args()

    N = args.n_ref + 1

    h5f = h5py.File("periodic_ref_output.hdf5", "w", driver="mpio", comm=MPI.COMM_WORLD)
    h5f.create_dataset("its", (N,), dtype=np.int32)
    h5f.create_dataset("num_dofs", (N,), dtype=np.int32)
    sd = h5f.create_dataset("solve_time", (N, MPI.COMM_WORLD.size), dtype=np.float64)
    solver = "BoomerAMG" if args.boomeramg else "GAMG"
    ct = "Tet" if args.tetra else "Hex"
    sd.attrs["solver"] = np.bytes_(solver)
    sd.attrs["degree"] = np.bytes_(str(int(args.degree)))
    sd.attrs["ct"] = np.bytes_(ct)
    for i in range(N):
        if MPI.COMM_WORLD.rank == 0:
            set_log_level(LogLevel.INFO)
            log(LogLevel.INFO, "Run {0:1d} in progress".format(i))
            set_log_level(LogLevel.ERROR)

        reference_periodic(
            args.tetra,
            r_lvl=i,
            out_hdf5=h5f,
            xdmf=args.xdmf,
            boomeramg=args.boomeramg,
            kspview=args.kspview,
            degree=args.degree,
        )

        if args.timings and i == N - 1:
            list_timings(MPI.COMM_WORLD, [TimingType.wall])
    h5f.close()